Synergizing Intelligence and Privacy: A Review of Integrating Internet of Things, Large Language Models, and Federated Learning in Advanced Networked Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202504.2082.v1
Bringing together the Internet of Things (IoT), LLMs , and Federated Learning (FL) offers exciting possibilities, creating a synergy to build smarter, privacy-preserving distributed systems. This review explores the merging of these technologies, particularly within edge computing environments. We examine current architectures and practical methods enabling this fusion, such as efficient low-rank adaptation (LoRA) for fine-tuning large models and memory-efficient Split Federated Learning (SFL) for collaborative edge training. However, this integration faces significant hurdles: the resource limitations of IoT devices, unreliable network communication, data heterogeneity, diverse security threats, fairness considerations, and regulatory demands. While other surveys cover pairwise combinations, this review distinctively analyzes the three-way synergy, highlighting how IoT, LLMs, and FL working in concert unlock capabilities unattainable otherwise. Our analysis compares various strategies proposed to tackle these issues (e.g., federated vs. centralized, SFL vs. standard FL, DP vs. cryptographic privacy), outlining their practical trade-offs. We showcase real-world progress and potential applications in domains like Industrial IoT and Smart Cities, considering both opportunities and limitations. Finally, this review identifies critical open questions and promising future research paths, including ultra-lightweight models, robust algorithms for heterogeneity, machine unlearning, standardized benchmarks, novel FL paradigms, and next-generation security. Addressing these areas is essential for responsibly harnessing this powerful technological blend.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202504.2082.v1
- https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pub
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409856449
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409856449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202504.2082.v1Digital Object Identifier
- Title
-
Synergizing Intelligence and Privacy: A Review of Integrating Internet of Things, Large Language Models, and Federated Learning in Advanced Networked SystemsWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-24Full publication date if available
- Authors
-
Hongming Yang, Hao Liu, Xin Yuan, Kai Wu, Wei Ni, J. Andrew Zhang, Ren Ping LiuList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202504.2082.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pubDirect OA link when available
- Concepts
-
Computer science, Federated learning, Internet privacy, The Internet, Internet of Things, Knowledge management, World Wide Web, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409856449 |
|---|---|
| doi | https://doi.org/10.20944/preprints202504.2082.v1 |
| ids.doi | https://doi.org/10.20944/preprints202504.2082.v1 |
| ids.openalex | https://openalex.org/W4409856449 |
| fwci | 4.81974515 |
| type | review |
| title | Synergizing Intelligence and Privacy: A Review of Integrating Internet of Things, Large Language Models, and Federated Learning in Advanced Networked Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8281999826431274 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5757005214691162 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2992525071 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5185766220092773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[1].display_name | Federated learning |
| concepts[2].id | https://openalex.org/C108827166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.49058881402015686 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[2].display_name | Internet privacy |
| concepts[3].id | https://openalex.org/C110875604 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4794993996620178 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[3].display_name | The Internet |
| concepts[4].id | https://openalex.org/C81860439 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43070754408836365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[4].display_name | Internet of Things |
| concepts[5].id | https://openalex.org/C56739046 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36441367864608765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[5].display_name | Knowledge management |
| concepts[6].id | https://openalex.org/C136764020 |
| concepts[6].level | 1 |
| concepts[6].score | 0.30067920684814453 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[6].display_name | World Wide Web |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1788928508758545 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5757005214691162 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/federated-learning |
| keywords[1].score | 0.5185766220092773 |
| keywords[1].display_name | Federated learning |
| keywords[2].id | https://openalex.org/keywords/internet-privacy |
| keywords[2].score | 0.49058881402015686 |
| keywords[2].display_name | Internet privacy |
| keywords[3].id | https://openalex.org/keywords/the-internet |
| keywords[3].score | 0.4794993996620178 |
| keywords[3].display_name | The Internet |
| keywords[4].id | https://openalex.org/keywords/internet-of-things |
| keywords[4].score | 0.43070754408836365 |
| keywords[4].display_name | Internet of Things |
| keywords[5].id | https://openalex.org/keywords/knowledge-management |
| keywords[5].score | 0.36441367864608765 |
| keywords[5].display_name | Knowledge management |
| keywords[6].id | https://openalex.org/keywords/world-wide-web |
| keywords[6].score | 0.30067920684814453 |
| keywords[6].display_name | World Wide Web |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.1788928508758545 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.20944/preprints202504.2082.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202504.2082.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5022306701 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6760-5918 |
| authorships[0].author.display_name | Hongming Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongming Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100641493 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-0546-4504 |
| authorships[1].author.display_name | Hao Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069145942 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2558-0203 |
| authorships[2].author.display_name | Xin Yuan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xin Yuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038287652 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5016-0251 |
| authorships[3].author.display_name | Kai Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kai Wu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021527965 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0780-4637 |
| authorships[4].author.display_name | Wei Ni |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei Ni |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100706723 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6102-3762 |
| authorships[5].author.display_name | J. Andrew Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | J. Andrew Zhang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5008974159 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7001-6305 |
| authorships[6].author.display_name | Ren Ping Liu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ren Ping Liu |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Synergizing Intelligence and Privacy: A Review of Integrating Internet of Things, Large Language Models, and Federated Learning in Advanced Networked Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8281999826431274 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4298221930, https://openalex.org/W4245926026, https://openalex.org/W4311097251, https://openalex.org/W2586548817, https://openalex.org/W2777914285, https://openalex.org/W2625093826, https://openalex.org/W4200598720, https://openalex.org/W4378677776, https://openalex.org/W2921026492, https://openalex.org/W4247463117 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202504.2082.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202504.2082.v1 |
| primary_location.id | doi:10.20944/preprints202504.2082.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/6eb3dbc656a536196a686c96142564e6/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202504.2082.v1 |
| publication_date | 2025-04-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index., | 8 |
| abstract_inverted_index.a | 17 |
| abstract_inverted_index.DP | 137 |
| abstract_inverted_index.FL | 111, 189 |
| abstract_inverted_index.We | 38, 145 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.in | 113, 152 |
| abstract_inverted_index.is | 197 |
| abstract_inverted_index.of | 4, 30, 77 |
| abstract_inverted_index.to | 19, 125 |
| abstract_inverted_index.FL, | 136 |
| abstract_inverted_index.IoT | 78, 156 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.SFL | 133 |
| abstract_inverted_index.and | 9, 42, 58, 90, 110, 149, 157, 163, 172, 191 |
| abstract_inverted_index.for | 54, 64, 182, 199 |
| abstract_inverted_index.how | 107 |
| abstract_inverted_index.the | 2, 28, 74, 103 |
| abstract_inverted_index.vs. | 131, 134, 138 |
| abstract_inverted_index.(FL) | 12 |
| abstract_inverted_index.IoT, | 108 |
| abstract_inverted_index.LLMs | 7 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.both | 161 |
| abstract_inverted_index.data | 83 |
| abstract_inverted_index.edge | 35, 66 |
| abstract_inverted_index.like | 154 |
| abstract_inverted_index.open | 170 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.this | 46, 69, 99, 166, 202 |
| abstract_inverted_index.(SFL) | 63 |
| abstract_inverted_index.LLMs, | 109 |
| abstract_inverted_index.Smart | 158 |
| abstract_inverted_index.Split | 60 |
| abstract_inverted_index.While | 93 |
| abstract_inverted_index.areas | 196 |
| abstract_inverted_index.build | 20 |
| abstract_inverted_index.cover | 96 |
| abstract_inverted_index.faces | 71 |
| abstract_inverted_index.large | 56 |
| abstract_inverted_index.novel | 188 |
| abstract_inverted_index.other | 94 |
| abstract_inverted_index.their | 142 |
| abstract_inverted_index.these | 31, 127, 195 |
| abstract_inverted_index.(IoT), | 6 |
| abstract_inverted_index.(LoRA) | 53 |
| abstract_inverted_index.(e.g., | 129 |
| abstract_inverted_index.Things | 5 |
| abstract_inverted_index.blend. | 205 |
| abstract_inverted_index.future | 174 |
| abstract_inverted_index.issues | 128 |
| abstract_inverted_index.models | 57 |
| abstract_inverted_index.offers | 13 |
| abstract_inverted_index.paths, | 176 |
| abstract_inverted_index.review | 26, 100, 167 |
| abstract_inverted_index.robust | 180 |
| abstract_inverted_index.tackle | 126 |
| abstract_inverted_index.unlock | 115 |
| abstract_inverted_index.within | 34 |
| abstract_inverted_index.Cities, | 159 |
| abstract_inverted_index.concert | 114 |
| abstract_inverted_index.current | 40 |
| abstract_inverted_index.diverse | 85 |
| abstract_inverted_index.domains | 153 |
| abstract_inverted_index.examine | 39 |
| abstract_inverted_index.fusion, | 47 |
| abstract_inverted_index.machine | 184 |
| abstract_inverted_index.merging | 29 |
| abstract_inverted_index.methods | 44 |
| abstract_inverted_index.models, | 179 |
| abstract_inverted_index.network | 81 |
| abstract_inverted_index.surveys | 95 |
| abstract_inverted_index.synergy | 18 |
| abstract_inverted_index.various | 122 |
| abstract_inverted_index.working | 112 |
| abstract_inverted_index.Bringing | 0 |
| abstract_inverted_index.Finally, | 165 |
| abstract_inverted_index.However, | 68 |
| abstract_inverted_index.Internet | 3 |
| abstract_inverted_index.Learning | 11, 62 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.analyzes | 102 |
| abstract_inverted_index.compares | 121 |
| abstract_inverted_index.creating | 16 |
| abstract_inverted_index.critical | 169 |
| abstract_inverted_index.demands. | 92 |
| abstract_inverted_index.devices, | 79 |
| abstract_inverted_index.enabling | 45 |
| abstract_inverted_index.exciting | 14 |
| abstract_inverted_index.explores | 27 |
| abstract_inverted_index.fairness | 88 |
| abstract_inverted_index.hurdles: | 73 |
| abstract_inverted_index.low-rank | 51 |
| abstract_inverted_index.pairwise | 97 |
| abstract_inverted_index.powerful | 203 |
| abstract_inverted_index.progress | 148 |
| abstract_inverted_index.proposed | 124 |
| abstract_inverted_index.research | 175 |
| abstract_inverted_index.resource | 75 |
| abstract_inverted_index.security | 86 |
| abstract_inverted_index.showcase | 146 |
| abstract_inverted_index.smarter, | 21 |
| abstract_inverted_index.standard | 135 |
| abstract_inverted_index.synergy, | 105 |
| abstract_inverted_index.systems. | 24 |
| abstract_inverted_index.threats, | 87 |
| abstract_inverted_index.together | 1 |
| abstract_inverted_index.Federated | 10, 61 |
| abstract_inverted_index.computing | 36 |
| abstract_inverted_index.efficient | 50 |
| abstract_inverted_index.essential | 198 |
| abstract_inverted_index.federated | 130 |
| abstract_inverted_index.including | 177 |
| abstract_inverted_index.outlining | 141 |
| abstract_inverted_index.potential | 150 |
| abstract_inverted_index.practical | 43, 143 |
| abstract_inverted_index.privacy), | 140 |
| abstract_inverted_index.promising | 173 |
| abstract_inverted_index.questions | 171 |
| abstract_inverted_index.security. | 193 |
| abstract_inverted_index.three-way | 104 |
| abstract_inverted_index.training. | 67 |
| abstract_inverted_index.Addressing | 194 |
| abstract_inverted_index.Industrial | 155 |
| abstract_inverted_index.adaptation | 52 |
| abstract_inverted_index.algorithms | 181 |
| abstract_inverted_index.harnessing | 201 |
| abstract_inverted_index.identifies | 168 |
| abstract_inverted_index.otherwise. | 118 |
| abstract_inverted_index.paradigms, | 190 |
| abstract_inverted_index.real-world | 147 |
| abstract_inverted_index.regulatory | 91 |
| abstract_inverted_index.strategies | 123 |
| abstract_inverted_index.unreliable | 80 |
| abstract_inverted_index.benchmarks, | 187 |
| abstract_inverted_index.considering | 160 |
| abstract_inverted_index.distributed | 23 |
| abstract_inverted_index.fine-tuning | 55 |
| abstract_inverted_index.integration | 70 |
| abstract_inverted_index.limitations | 76 |
| abstract_inverted_index.responsibly | 200 |
| abstract_inverted_index.significant | 72 |
| abstract_inverted_index.trade-offs. | 144 |
| abstract_inverted_index.unlearning, | 185 |
| abstract_inverted_index.applications | 151 |
| abstract_inverted_index.capabilities | 116 |
| abstract_inverted_index.centralized, | 132 |
| abstract_inverted_index.highlighting | 106 |
| abstract_inverted_index.limitations. | 164 |
| abstract_inverted_index.particularly | 33 |
| abstract_inverted_index.standardized | 186 |
| abstract_inverted_index.unattainable | 117 |
| abstract_inverted_index.architectures | 41 |
| abstract_inverted_index.collaborative | 65 |
| abstract_inverted_index.combinations, | 98 |
| abstract_inverted_index.cryptographic | 139 |
| abstract_inverted_index.distinctively | 101 |
| abstract_inverted_index.environments. | 37 |
| abstract_inverted_index.opportunities | 162 |
| abstract_inverted_index.technological | 204 |
| abstract_inverted_index.technologies, | 32 |
| abstract_inverted_index.communication, | 82 |
| abstract_inverted_index.heterogeneity, | 84, 183 |
| abstract_inverted_index.possibilities, | 15 |
| abstract_inverted_index.considerations, | 89 |
| abstract_inverted_index.next-generation | 192 |
| abstract_inverted_index.memory-efficient | 59 |
| abstract_inverted_index.ultra-lightweight | 178 |
| abstract_inverted_index.privacy-preserving | 22 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.93977756 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |