Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.11479
With recent advances in speech synthesis, synthetic data is becoming a viable alternative to real data for training speech recognition models. However, machine learning with synthetic data is not trivial due to the gap between the synthetic and the real data distributions. Synthetic datasets may contain artifacts that do not exist in real data such as structured noise, content errors, or unrealistic speaking styles. Moreover, the synthesis process may introduce a bias due to uneven sampling of the data manifold. We propose two novel techniques during training to mitigate the problems due to the distribution gap: (i) a rejection sampling algorithm and (ii) using separate batch normalization statistics for the real and the synthetic samples. We show that these methods significantly improve the training of speech recognition models using synthetic data. We evaluate the proposed approach on keyword detection and Automatic Speech Recognition (ASR) tasks, and observe up to 18% and 13% relative error reduction, respectively, compared to naively using the synthetic data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2110.11479
- https://arxiv.org/pdf/2110.11479
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300426785
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300426785Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.11479Digital Object Identifier
- Title
-
Synt++: Utilizing Imperfect Synthetic Data to Improve Speech RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-21Full publication date if available
- Authors
-
Ting-Yao Hu, Mohammadreza Armandpour, Ashish Shrivastava, Jen-Hao Rick Chang, Hema Swetha Koppula, Oncel TuzelList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.11479Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.11479Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.11479Direct OA link when available
- Concepts
-
Synthetic data, Computer science, Normalization (sociology), Speech recognition, Speech synthesis, Artificial intelligence, Sampling (signal processing), Pattern recognition (psychology), Noise reduction, Noise (video), Training set, Machine learning, Computer vision, Filter (signal processing), Image (mathematics), Sociology, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300426785 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.11479 |
| ids.doi | https://doi.org/10.48550/arxiv.2110.11479 |
| ids.openalex | https://openalex.org/W4300426785 |
| fwci | |
| type | preprint |
| title | Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160920958 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7830394506454468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[0].display_name | Synthetic data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7450300455093384 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C136886441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7151732444763184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[2].display_name | Normalization (sociology) |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6012682318687439 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C14999030 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4938679337501526 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16346 |
| concepts[4].display_name | Speech synthesis |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49280670285224915 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C140779682 |
| concepts[6].level | 3 |
| concepts[6].score | 0.46151894330978394 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[6].display_name | Sampling (signal processing) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46110066771507263 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C163294075 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4234158992767334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[8].display_name | Noise reduction |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4177480936050415 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C51632099 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41700229048728943 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[10].display_name | Training set |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3454717993736267 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07488510012626648 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C106131492 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[13].display_name | Filter (signal processing) |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C19165224 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[16].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/synthetic-data |
| keywords[0].score | 0.7830394506454468 |
| keywords[0].display_name | Synthetic data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7450300455093384 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/normalization |
| keywords[2].score | 0.7151732444763184 |
| keywords[2].display_name | Normalization (sociology) |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.6012682318687439 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/speech-synthesis |
| keywords[4].score | 0.4938679337501526 |
| keywords[4].display_name | Speech synthesis |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.49280670285224915 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/sampling |
| keywords[6].score | 0.46151894330978394 |
| keywords[6].display_name | Sampling (signal processing) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.46110066771507263 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/noise-reduction |
| keywords[8].score | 0.4234158992767334 |
| keywords[8].display_name | Noise reduction |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.4177480936050415 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/training-set |
| keywords[10].score | 0.41700229048728943 |
| keywords[10].display_name | Training set |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3454717993736267 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.07488510012626648 |
| keywords[12].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2110.11479 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.11479 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.11479 |
| locations[1].id | doi:10.48550/arxiv.2110.11479 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2110.11479 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062098630 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ting-Yao Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Ting-Yao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053849494 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mohammadreza Armandpour |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Armandpour, Mohammadreza |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002740493 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2465-0708 |
| authorships[2].author.display_name | Ashish Shrivastava |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shrivastava, Ashish |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066816752 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jen-Hao Rick Chang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chang, Jen-Hao Rick |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064400393 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hema Swetha Koppula |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Koppula, Hema |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5028613002 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Oncel Tuzel |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tuzel, Oncel |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.11479 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W4225274307, https://openalex.org/W4224936630, https://openalex.org/W4312659495, https://openalex.org/W4385366257, https://openalex.org/W3101007570, https://openalex.org/W4387910575, https://openalex.org/W3176425421, https://openalex.org/W3091312527, https://openalex.org/W1555087354, https://openalex.org/W4287865546 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.11479 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.11479 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.11479 |
| primary_location.id | pmh:oai:arXiv.org:2110.11479 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.11479 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.11479 |
| publication_date | 2021-10-21 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 70, 97 |
| abstract_inverted_index.We | 80, 115, 131 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.do | 48 |
| abstract_inverted_index.in | 3, 51 |
| abstract_inverted_index.is | 8, 27 |
| abstract_inverted_index.of | 76, 124 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 13, 31, 73, 87, 92, 148, 157 |
| abstract_inverted_index.up | 147 |
| abstract_inverted_index.(i) | 96 |
| abstract_inverted_index.13% | 151 |
| abstract_inverted_index.18% | 149 |
| abstract_inverted_index.and | 37, 101, 111, 139, 145, 150 |
| abstract_inverted_index.due | 30, 72, 91 |
| abstract_inverted_index.for | 16, 108 |
| abstract_inverted_index.gap | 33 |
| abstract_inverted_index.may | 44, 68 |
| abstract_inverted_index.not | 28, 49 |
| abstract_inverted_index.the | 32, 35, 38, 65, 77, 89, 93, 109, 112, 122, 133, 160 |
| abstract_inverted_index.two | 82 |
| abstract_inverted_index.(ii) | 102 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.bias | 71 |
| abstract_inverted_index.data | 7, 15, 26, 40, 53, 78 |
| abstract_inverted_index.gap: | 95 |
| abstract_inverted_index.real | 14, 39, 52, 110 |
| abstract_inverted_index.show | 116 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.that | 47, 117 |
| abstract_inverted_index.with | 24 |
| abstract_inverted_index.(ASR) | 143 |
| abstract_inverted_index.batch | 105 |
| abstract_inverted_index.data. | 130, 162 |
| abstract_inverted_index.error | 153 |
| abstract_inverted_index.exist | 50 |
| abstract_inverted_index.novel | 83 |
| abstract_inverted_index.these | 118 |
| abstract_inverted_index.using | 103, 128, 159 |
| abstract_inverted_index.Speech | 141 |
| abstract_inverted_index.during | 85 |
| abstract_inverted_index.models | 127 |
| abstract_inverted_index.noise, | 57 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.speech | 4, 18, 125 |
| abstract_inverted_index.tasks, | 144 |
| abstract_inverted_index.uneven | 74 |
| abstract_inverted_index.viable | 11 |
| abstract_inverted_index.between | 34 |
| abstract_inverted_index.contain | 45 |
| abstract_inverted_index.content | 58 |
| abstract_inverted_index.errors, | 59 |
| abstract_inverted_index.improve | 121 |
| abstract_inverted_index.keyword | 137 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.methods | 119 |
| abstract_inverted_index.models. | 20 |
| abstract_inverted_index.naively | 158 |
| abstract_inverted_index.observe | 146 |
| abstract_inverted_index.process | 67 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.styles. | 63 |
| abstract_inverted_index.trivial | 29 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.advances | 2 |
| abstract_inverted_index.approach | 135 |
| abstract_inverted_index.becoming | 9 |
| abstract_inverted_index.compared | 156 |
| abstract_inverted_index.datasets | 43 |
| abstract_inverted_index.evaluate | 132 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.mitigate | 88 |
| abstract_inverted_index.problems | 90 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.relative | 152 |
| abstract_inverted_index.samples. | 114 |
| abstract_inverted_index.sampling | 75, 99 |
| abstract_inverted_index.separate | 104 |
| abstract_inverted_index.speaking | 62 |
| abstract_inverted_index.training | 17, 86, 123 |
| abstract_inverted_index.Automatic | 140 |
| abstract_inverted_index.Moreover, | 64 |
| abstract_inverted_index.Synthetic | 42 |
| abstract_inverted_index.algorithm | 100 |
| abstract_inverted_index.artifacts | 46 |
| abstract_inverted_index.detection | 138 |
| abstract_inverted_index.introduce | 69 |
| abstract_inverted_index.manifold. | 79 |
| abstract_inverted_index.rejection | 98 |
| abstract_inverted_index.synthesis | 66 |
| abstract_inverted_index.synthetic | 6, 25, 36, 113, 129, 161 |
| abstract_inverted_index.reduction, | 154 |
| abstract_inverted_index.statistics | 107 |
| abstract_inverted_index.structured | 56 |
| abstract_inverted_index.synthesis, | 5 |
| abstract_inverted_index.techniques | 84 |
| abstract_inverted_index.Recognition | 142 |
| abstract_inverted_index.alternative | 12 |
| abstract_inverted_index.recognition | 19, 126 |
| abstract_inverted_index.unrealistic | 61 |
| abstract_inverted_index.distribution | 94 |
| abstract_inverted_index.normalization | 106 |
| abstract_inverted_index.respectively, | 155 |
| abstract_inverted_index.significantly | 120 |
| abstract_inverted_index.distributions. | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |