Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeability Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s13321-025-01083-4
Cyclic peptides are promising drug candidates due to their ability to modulate intracellular protein-protein interactions, a property often inaccessible to small molecules. However, their typically poor membrane permeability limits therapeutic applicability. Accurate computational prediction of permeability can accelerate the identification of cell-permeable candidates, reducing reliance on time-consuming and costly experimental screening. Although deep learning has shown potential in predicting molecular properties, its application in permeability prediction remains underexplored. A systematic evaluation of these models is important to assess current capabilities and guide future development. In this study, we conduct a comprehensive benchmark of 13 machine learning models for predicting cyclic peptide membrane permeability. These models cover four types of molecular representations: fingerprints, SMILES strings, molecular graphs, and 2D images. We use experimentally measured PAMPA permeability data from the CycPeptMPDB database, comprising nearly 6000 cyclic peptides, and evaluate performance across three prediction tasks: regression, binary classification, and soft-label classification. Two data-splitting strategies, random split and scaffold split, are used to assess the generalizability of trained models. Our results show that model performance depends strongly on molecular representation and model architecture. Graph-based models, particularly the Directed Message Passing Neural Network (DMPNN), consistently achieve top performance across tasks. Regression generally outperforms classification. Scaffold-based splitting, although intended to more rigorously assess generalization, yields substantially lower model generalizability compared to random splitting. Comparing prediction errors with experimental variability highlights the practical value of current models while also indicating room for further improvement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13321-025-01083-4
- https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4
- OA Status
- gold
- Cited By
- 1
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413798564
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413798564Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13321-025-01083-4Digital Object Identifier
- Title
-
Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeabilityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-28Full publication date if available
- Authors
-
Wei Liu, Jianguo Li, Chandra Verma, Hwee Kuan LeeList of authors in order
- Landing page
-
https://doi.org/10.1186/s13321-025-01083-4Publisher landing page
- PDF URL
-
https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4Direct OA link when available
- Concepts
-
Benchmarking, Computer science, Cyclic peptide, Permeability (electromagnetism), Data mining, Data science, Chemistry, Membrane, Peptide, Biochemistry, Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413798564 |
|---|---|
| doi | https://doi.org/10.1186/s13321-025-01083-4 |
| ids.doi | https://doi.org/10.1186/s13321-025-01083-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40877984 |
| ids.openalex | https://openalex.org/W4413798564 |
| fwci | 2.68294463 |
| type | article |
| title | Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeability |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | 129 |
| biblio.first_page | 129 |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10911 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Chemical Synthesis and Analysis |
| is_xpac | False |
| apc_list.value | 1290 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1582 |
| apc_paid.value | 1290 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1582 |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7149159908294678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5655215978622437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C60984968 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5192575454711914 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q389172 |
| concepts[2].display_name | Cyclic peptide |
| concepts[3].id | https://openalex.org/C120882062 |
| concepts[3].level | 3 |
| concepts[3].score | 0.41992902755737305 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q28352 |
| concepts[3].display_name | Permeability (electromagnetism) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3835132420063019 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38306981325149536 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.360340416431427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| concepts[7].id | https://openalex.org/C41625074 |
| concepts[7].level | 2 |
| concepts[7].score | 0.35536932945251465 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q176088 |
| concepts[7].display_name | Membrane |
| concepts[8].id | https://openalex.org/C2779281246 |
| concepts[8].level | 2 |
| concepts[8].score | 0.35333406925201416 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172847 |
| concepts[8].display_name | Peptide |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13782966136932373 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| concepts[10].id | https://openalex.org/C144133560 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08636593818664551 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[10].display_name | Business |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.7149159908294678 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5655215978622437 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cyclic-peptide |
| keywords[2].score | 0.5192575454711914 |
| keywords[2].display_name | Cyclic peptide |
| keywords[3].id | https://openalex.org/keywords/permeability |
| keywords[3].score | 0.41992902755737305 |
| keywords[3].display_name | Permeability (electromagnetism) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3835132420063019 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.38306981325149536 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/chemistry |
| keywords[6].score | 0.360340416431427 |
| keywords[6].display_name | Chemistry |
| keywords[7].id | https://openalex.org/keywords/membrane |
| keywords[7].score | 0.35536932945251465 |
| keywords[7].display_name | Membrane |
| keywords[8].id | https://openalex.org/keywords/peptide |
| keywords[8].score | 0.35333406925201416 |
| keywords[8].display_name | Peptide |
| keywords[9].id | https://openalex.org/keywords/biochemistry |
| keywords[9].score | 0.13782966136932373 |
| keywords[9].display_name | Biochemistry |
| keywords[10].id | https://openalex.org/keywords/business |
| keywords[10].score | 0.08636593818664551 |
| keywords[10].display_name | Business |
| language | en |
| locations[0].id | doi:10.1186/s13321-025-01083-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S180838163 |
| locations[0].source.issn | 1758-2946 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1758-2946 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Cheminformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Cheminformatics |
| locations[0].landing_page_url | https://doi.org/10.1186/s13321-025-01083-4 |
| locations[1].id | pmid:40877984 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of cheminformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40877984 |
| locations[2].id | pmh:oai:doaj.org/article:2209c97b2a25427884a626a428a7fd55 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Cheminformatics, Vol 17, Iss 1, Pp 1-12 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2209c97b2a25427884a626a428a7fd55 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12392647 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Cheminform |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12392647 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100431754 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1916-4684 |
| authorships[0].author.display_name | Wei Liu |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I115228651, https://openalex.org/I4210148498 |
| authorships[0].affiliations[0].raw_affiliation_string | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[0].institutions[0].id | https://openalex.org/I115228651 |
| authorships[0].institutions[0].ror | https://ror.org/036wvzt09 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I115228651 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | Agency for Science, Technology and Research |
| authorships[0].institutions[1].id | https://openalex.org/I4210148498 |
| authorships[0].institutions[1].ror | https://ror.org/044w3nw43 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I115228651, https://openalex.org/I2801752549, https://openalex.org/I4210148498 |
| authorships[0].institutions[1].country_code | SG |
| authorships[0].institutions[1].display_name | Bioinformatics Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[1].author.id | https://openalex.org/A5100368371 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5544-6451 |
| authorships[1].author.display_name | Jianguo Li |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I115228651, https://openalex.org/I4210148498 |
| authorships[1].affiliations[0].raw_affiliation_string | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[1].institutions[0].id | https://openalex.org/I115228651 |
| authorships[1].institutions[0].ror | https://ror.org/036wvzt09 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I115228651 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | Agency for Science, Technology and Research |
| authorships[1].institutions[1].id | https://openalex.org/I4210148498 |
| authorships[1].institutions[1].ror | https://ror.org/044w3nw43 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I115228651, https://openalex.org/I2801752549, https://openalex.org/I4210148498 |
| authorships[1].institutions[1].country_code | SG |
| authorships[1].institutions[1].display_name | Bioinformatics Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianguo Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[2].author.id | https://openalex.org/A5045760818 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0733-9798 |
| authorships[2].author.display_name | Chandra Verma |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I115228651, https://openalex.org/I4210148498 |
| authorships[2].affiliations[0].raw_affiliation_string | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I115228651 |
| authorships[2].institutions[0].ror | https://ror.org/036wvzt09 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I115228651 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Agency for Science, Technology and Research |
| authorships[2].institutions[1].id | https://openalex.org/I4210148498 |
| authorships[2].institutions[1].ror | https://ror.org/044w3nw43 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I115228651, https://openalex.org/I2801752549, https://openalex.org/I4210148498 |
| authorships[2].institutions[1].country_code | SG |
| authorships[2].institutions[1].display_name | Bioinformatics Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chandra S. Verma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[3].author.id | https://openalex.org/A5032667101 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1932-5377 |
| authorships[3].author.display_name | Hwee Kuan Lee |
| authorships[3].countries | FR, SG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I115228651, https://openalex.org/I4210148498 |
| authorships[3].affiliations[0].raw_affiliation_string | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I172675005, https://openalex.org/I4210118524 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore , 637551, Singapore |
| authorships[3].institutions[0].id | https://openalex.org/I4210118524 |
| authorships[3].institutions[0].ror | https://ror.org/02dn7x778 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210118524 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Université Bourgogne Franche-Comté |
| authorships[3].institutions[1].id | https://openalex.org/I115228651 |
| authorships[3].institutions[1].ror | https://ror.org/036wvzt09 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I115228651 |
| authorships[3].institutions[1].country_code | SG |
| authorships[3].institutions[1].display_name | Agency for Science, Technology and Research |
| authorships[3].institutions[2].id | https://openalex.org/I4210148498 |
| authorships[3].institutions[2].ror | https://ror.org/044w3nw43 |
| authorships[3].institutions[2].type | facility |
| authorships[3].institutions[2].lineage | https://openalex.org/I115228651, https://openalex.org/I2801752549, https://openalex.org/I4210148498 |
| authorships[3].institutions[2].country_code | SG |
| authorships[3].institutions[2].display_name | Bioinformatics Institute |
| authorships[3].institutions[3].id | https://openalex.org/I172675005 |
| authorships[3].institutions[3].ror | https://ror.org/02e7b5302 |
| authorships[3].institutions[3].type | education |
| authorships[3].institutions[3].lineage | https://openalex.org/I172675005 |
| authorships[3].institutions[3].country_code | SG |
| authorships[3].institutions[3].display_name | Nanyang Technological University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hwee Kuan Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopilis Street, Singapore, 138671, Singapore, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore , 637551, Singapore |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W4406161738, https://openalex.org/W2589939877, https://openalex.org/W2081553665, https://openalex.org/W2892113376, https://openalex.org/W2030585732, https://openalex.org/W3012180934, https://openalex.org/W2078683866, https://openalex.org/W2063421454, https://openalex.org/W2088029223, https://openalex.org/W3209239669 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s13321-025-01083-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S180838163 |
| best_oa_location.source.issn | 1758-2946 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1758-2946 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Cheminformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Cheminformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13321-025-01083-4 |
| primary_location.id | doi:10.1186/s13321-025-01083-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S180838163 |
| primary_location.source.issn | 1758-2946 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1758-2946 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Cheminformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Cheminformatics |
| primary_location.landing_page_url | https://doi.org/10.1186/s13321-025-01083-4 |
| publication_date | 2025-08-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2912930263, https://openalex.org/W3082499071, https://openalex.org/W3127297964, https://openalex.org/W2945543430, https://openalex.org/W2186110136, https://openalex.org/W2785477444, https://openalex.org/W4206627645, https://openalex.org/W2065889205, https://openalex.org/W4327698599, https://openalex.org/W4220811801, https://openalex.org/W4293461777, https://openalex.org/W2045093121, https://openalex.org/W1988315803, https://openalex.org/W2275988317, https://openalex.org/W2895931706, https://openalex.org/W3177545261, https://openalex.org/W4410077805, https://openalex.org/W4409643576, https://openalex.org/W4388798297, https://openalex.org/W4403833137, https://openalex.org/W2966357564, https://openalex.org/W4309218736, https://openalex.org/W3207696368, https://openalex.org/W2968734407, https://openalex.org/W2911964244, https://openalex.org/W2119821739, https://openalex.org/W4327694659, https://openalex.org/W4391231361, https://openalex.org/W4401103154, https://openalex.org/W2004926660, https://openalex.org/W4232529163, https://openalex.org/W2968953851, https://openalex.org/W1988137261, https://openalex.org/W2110485445, https://openalex.org/W2794209590, https://openalex.org/W2064675550, https://openalex.org/W2076498053, https://openalex.org/W2406943157, https://openalex.org/W2529268217, https://openalex.org/W2115412287, https://openalex.org/W2594183968, https://openalex.org/W2066273100, https://openalex.org/W2033495141, https://openalex.org/W1904678284, https://openalex.org/W3104896896 |
| referenced_works_count | 45 |
| abstract_inverted_index.A | 68 |
| abstract_inverted_index.a | 15, 89 |
| abstract_inverted_index.13 | 93 |
| abstract_inverted_index.2D | 117 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.in | 57, 63 |
| abstract_inverted_index.is | 74 |
| abstract_inverted_index.of | 34, 40, 71, 92, 108, 162, 227 |
| abstract_inverted_index.on | 45, 173 |
| abstract_inverted_index.to | 7, 10, 19, 76, 158, 203, 214 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.Our | 165 |
| abstract_inverted_index.Two | 148 |
| abstract_inverted_index.and | 47, 80, 116, 135, 145, 153, 176 |
| abstract_inverted_index.are | 2, 156 |
| abstract_inverted_index.can | 36 |
| abstract_inverted_index.due | 6 |
| abstract_inverted_index.for | 97, 234 |
| abstract_inverted_index.has | 54 |
| abstract_inverted_index.its | 61 |
| abstract_inverted_index.the | 38, 127, 160, 182, 224 |
| abstract_inverted_index.top | 191 |
| abstract_inverted_index.use | 120 |
| abstract_inverted_index.6000 | 132 |
| abstract_inverted_index.also | 231 |
| abstract_inverted_index.data | 125 |
| abstract_inverted_index.deep | 52 |
| abstract_inverted_index.drug | 4 |
| abstract_inverted_index.four | 106 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.more | 204 |
| abstract_inverted_index.poor | 25 |
| abstract_inverted_index.room | 233 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.used | 157 |
| abstract_inverted_index.with | 220 |
| abstract_inverted_index.PAMPA | 123 |
| abstract_inverted_index.These | 103 |
| abstract_inverted_index.cover | 105 |
| abstract_inverted_index.guide | 81 |
| abstract_inverted_index.lower | 210 |
| abstract_inverted_index.model | 169, 177, 211 |
| abstract_inverted_index.often | 17 |
| abstract_inverted_index.shown | 55 |
| abstract_inverted_index.small | 20 |
| abstract_inverted_index.split | 152 |
| abstract_inverted_index.their | 8, 23 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.three | 139 |
| abstract_inverted_index.types | 107 |
| abstract_inverted_index.value | 226 |
| abstract_inverted_index.while | 230 |
| abstract_inverted_index.Cyclic | 0 |
| abstract_inverted_index.Neural | 186 |
| abstract_inverted_index.SMILES | 112 |
| abstract_inverted_index.across | 138, 193 |
| abstract_inverted_index.assess | 77, 159, 206 |
| abstract_inverted_index.binary | 143 |
| abstract_inverted_index.costly | 48 |
| abstract_inverted_index.cyclic | 99, 133 |
| abstract_inverted_index.errors | 219 |
| abstract_inverted_index.future | 82 |
| abstract_inverted_index.limits | 28 |
| abstract_inverted_index.models | 73, 96, 104, 229 |
| abstract_inverted_index.nearly | 131 |
| abstract_inverted_index.random | 151, 215 |
| abstract_inverted_index.split, | 155 |
| abstract_inverted_index.study, | 86 |
| abstract_inverted_index.tasks. | 194 |
| abstract_inverted_index.tasks: | 141 |
| abstract_inverted_index.yields | 208 |
| abstract_inverted_index.Message | 184 |
| abstract_inverted_index.Network | 187 |
| abstract_inverted_index.Passing | 185 |
| abstract_inverted_index.ability | 9 |
| abstract_inverted_index.achieve | 190 |
| abstract_inverted_index.conduct | 88 |
| abstract_inverted_index.current | 78, 228 |
| abstract_inverted_index.depends | 171 |
| abstract_inverted_index.further | 235 |
| abstract_inverted_index.graphs, | 115 |
| abstract_inverted_index.images. | 118 |
| abstract_inverted_index.machine | 94 |
| abstract_inverted_index.models, | 180 |
| abstract_inverted_index.models. | 164 |
| abstract_inverted_index.peptide | 100 |
| abstract_inverted_index.remains | 66 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.trained | 163 |
| abstract_inverted_index.(DMPNN), | 188 |
| abstract_inverted_index.Accurate | 31 |
| abstract_inverted_index.Although | 51 |
| abstract_inverted_index.Directed | 183 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.although | 201 |
| abstract_inverted_index.compared | 213 |
| abstract_inverted_index.evaluate | 136 |
| abstract_inverted_index.intended | 202 |
| abstract_inverted_index.learning | 53, 95 |
| abstract_inverted_index.measured | 122 |
| abstract_inverted_index.membrane | 26, 101 |
| abstract_inverted_index.modulate | 11 |
| abstract_inverted_index.peptides | 1 |
| abstract_inverted_index.property | 16 |
| abstract_inverted_index.reducing | 43 |
| abstract_inverted_index.reliance | 44 |
| abstract_inverted_index.scaffold | 154 |
| abstract_inverted_index.strings, | 113 |
| abstract_inverted_index.strongly | 172 |
| abstract_inverted_index.Comparing | 217 |
| abstract_inverted_index.benchmark | 91 |
| abstract_inverted_index.database, | 129 |
| abstract_inverted_index.generally | 196 |
| abstract_inverted_index.important | 75 |
| abstract_inverted_index.molecular | 59, 109, 114, 174 |
| abstract_inverted_index.peptides, | 134 |
| abstract_inverted_index.potential | 56 |
| abstract_inverted_index.practical | 225 |
| abstract_inverted_index.promising | 3 |
| abstract_inverted_index.typically | 24 |
| abstract_inverted_index.Regression | 195 |
| abstract_inverted_index.accelerate | 37 |
| abstract_inverted_index.candidates | 5 |
| abstract_inverted_index.comprising | 130 |
| abstract_inverted_index.evaluation | 70 |
| abstract_inverted_index.highlights | 223 |
| abstract_inverted_index.indicating | 232 |
| abstract_inverted_index.molecules. | 21 |
| abstract_inverted_index.predicting | 58, 98 |
| abstract_inverted_index.prediction | 33, 65, 140, 218 |
| abstract_inverted_index.rigorously | 205 |
| abstract_inverted_index.screening. | 50 |
| abstract_inverted_index.soft-label | 146 |
| abstract_inverted_index.splitting, | 200 |
| abstract_inverted_index.splitting. | 216 |
| abstract_inverted_index.systematic | 69 |
| abstract_inverted_index.CycPeptMPDB | 128 |
| abstract_inverted_index.Graph-based | 179 |
| abstract_inverted_index.application | 62 |
| abstract_inverted_index.candidates, | 42 |
| abstract_inverted_index.outperforms | 197 |
| abstract_inverted_index.performance | 137, 170, 192 |
| abstract_inverted_index.properties, | 60 |
| abstract_inverted_index.regression, | 142 |
| abstract_inverted_index.strategies, | 150 |
| abstract_inverted_index.therapeutic | 29 |
| abstract_inverted_index.variability | 222 |
| abstract_inverted_index.capabilities | 79 |
| abstract_inverted_index.consistently | 189 |
| abstract_inverted_index.development. | 83 |
| abstract_inverted_index.experimental | 49, 221 |
| abstract_inverted_index.improvement. | 236 |
| abstract_inverted_index.inaccessible | 18 |
| abstract_inverted_index.particularly | 181 |
| abstract_inverted_index.permeability | 27, 35, 64, 124 |
| abstract_inverted_index.architecture. | 178 |
| abstract_inverted_index.comprehensive | 90 |
| abstract_inverted_index.computational | 32 |
| abstract_inverted_index.fingerprints, | 111 |
| abstract_inverted_index.interactions, | 14 |
| abstract_inverted_index.intracellular | 12 |
| abstract_inverted_index.permeability. | 102 |
| abstract_inverted_index.substantially | 209 |
| abstract_inverted_index.Scaffold-based | 199 |
| abstract_inverted_index.applicability. | 30 |
| abstract_inverted_index.cell-permeable | 41 |
| abstract_inverted_index.data-splitting | 149 |
| abstract_inverted_index.experimentally | 121 |
| abstract_inverted_index.identification | 39 |
| abstract_inverted_index.representation | 175 |
| abstract_inverted_index.time-consuming | 46 |
| abstract_inverted_index.underexplored. | 67 |
| abstract_inverted_index.classification, | 144 |
| abstract_inverted_index.classification. | 147, 198 |
| abstract_inverted_index.generalization, | 207 |
| abstract_inverted_index.protein-protein | 13 |
| abstract_inverted_index.generalizability | 161, 212 |
| abstract_inverted_index.representations: | 110 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100431754 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I115228651, https://openalex.org/I4210148498 |
| citation_normalized_percentile.value | 0.85046633 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |