Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1021/acsomega.2c05826
In recent years, large-scale structure-based virtual screening has attracted increasing levels of interest for identification of novel compounds corresponding to potential drug targets. It is critical to understand the strengths and weaknesses of docking algorithms to increase the success rate in practical applications. Here, we systematically investigated the docking successes and failures of two representative docking programs: UCSF DOCK 3.7 and AutoDock Vina. DOCK 3.7 performed better in early enrichment on the Directory of Useful Decoys: Enhanced (DUD-E) data set, although both docking methods were roughly comparable in overall enrichment performance. DOCK 3.7 also showed superior computational efficiency. Intriguingly, the Vina scoring function showed a bias toward compounds with higher molecular weights. Both the tested docking approaches yielded incorrectly predicted ligand binding poses caused by the limitations of torsion sampling. Based on a careful analysis of docking results from six representative cases, we propose the reasons underlying docking failures; furthermore, we provide a few solutions, representing practical guidance for large-scale virtual screening campaigns and future docking algorithm development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acsomega.2c05826
- OA Status
- gold
- Cited By
- 24
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306658293
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306658293Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acsomega.2c05826Digital Object Identifier
- Title
-
Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual ScreeningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-17Full publication date if available
- Authors
-
Xu Min, Cheng Shen, Jincai Yang, Qing Wang, Niu HuangList of authors in order
- Landing page
-
https://doi.org/10.1021/acsomega.2c05826Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1021/acsomega.2c05826Direct OA link when available
- Concepts
-
DOCK, Docking (animal), Virtual screening, Computer science, Protein–ligand docking, AutoDock, Computational biology, Drug discovery, Data mining, Artificial intelligence, Bioinformatics, Chemistry, Biology, In silico, Biochemistry, Nursing, Medicine, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 9, 2023: 4, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306658293 |
|---|---|
| doi | https://doi.org/10.1021/acsomega.2c05826 |
| ids.doi | https://doi.org/10.1021/acsomega.2c05826 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36340123 |
| ids.openalex | https://openalex.org/W4306658293 |
| fwci | 6.32034633 |
| type | article |
| title | Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening |
| awards[0].id | https://openalex.org/G7060692123 |
| awards[0].funder_id | https://openalex.org/F4320325902 |
| awards[0].display_name | |
| awards[0].funder_award_id | Z201100005320012 |
| awards[0].funder_display_name | Beijing Municipal Science and Technology Commission |
| awards[1].id | https://openalex.org/G3487226201 |
| awards[1].funder_id | https://openalex.org/F4320325902 |
| awards[1].display_name | |
| awards[1].funder_award_id | Z211100003321007 |
| awards[1].funder_display_name | Beijing Municipal Science and Technology Commission |
| biblio.issue | 43 |
| biblio.volume | 7 |
| biblio.last_page | 39428 |
| biblio.first_page | 39417 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9868999719619751 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9821000099182129 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| funders[0].id | https://openalex.org/F4320322392 |
| funders[0].ror | https://ror.org/03cve4549 |
| funders[0].display_name | Tsinghua University |
| funders[1].id | https://openalex.org/F4320325902 |
| funders[1].ror | |
| funders[1].display_name | Beijing Municipal Science and Technology Commission |
| is_xpac | False |
| apc_list.value | 1685 |
| apc_list.currency | USD |
| apc_list.value_usd | 1685 |
| apc_paid.value | 1685 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1685 |
| concepts[0].id | https://openalex.org/C93073132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8894981145858765 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q24726581 |
| concepts[0].display_name | DOCK |
| concepts[1].id | https://openalex.org/C41685203 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8726212978363037 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1974042 |
| concepts[1].display_name | Docking (animal) |
| concepts[2].id | https://openalex.org/C103697762 |
| concepts[2].level | 3 |
| concepts[2].score | 0.8623492121696472 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4112105 |
| concepts[2].display_name | Virtual screening |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5717357397079468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C77319485 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5700781941413879 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7251520 |
| concepts[4].display_name | Protein–ligand docking |
| concepts[5].id | https://openalex.org/C2780152424 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5471800565719604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4826062 |
| concepts[5].display_name | AutoDock |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41062378883361816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C74187038 |
| concepts[7].level | 2 |
| concepts[7].score | 0.36649608612060547 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[7].display_name | Drug discovery |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33544355630874634 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3325982689857483 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C60644358 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2218700349330902 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[10].display_name | Bioinformatics |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20001724362373352 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1830587387084961 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C2775905019 |
| concepts[13].level | 3 |
| concepts[13].score | 0.1752040684223175 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[13].display_name | In silico |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07146695256233215 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C159110408 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[15].display_name | Nursing |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/dock |
| keywords[0].score | 0.8894981145858765 |
| keywords[0].display_name | DOCK |
| keywords[1].id | https://openalex.org/keywords/docking |
| keywords[1].score | 0.8726212978363037 |
| keywords[1].display_name | Docking (animal) |
| keywords[2].id | https://openalex.org/keywords/virtual-screening |
| keywords[2].score | 0.8623492121696472 |
| keywords[2].display_name | Virtual screening |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5717357397079468 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/protein–ligand-docking |
| keywords[4].score | 0.5700781941413879 |
| keywords[4].display_name | Protein–ligand docking |
| keywords[5].id | https://openalex.org/keywords/autodock |
| keywords[5].score | 0.5471800565719604 |
| keywords[5].display_name | AutoDock |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.41062378883361816 |
| keywords[6].display_name | Computational biology |
| keywords[7].id | https://openalex.org/keywords/drug-discovery |
| keywords[7].score | 0.36649608612060547 |
| keywords[7].display_name | Drug discovery |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.33544355630874634 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3325982689857483 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/bioinformatics |
| keywords[10].score | 0.2218700349330902 |
| keywords[10].display_name | Bioinformatics |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.20001724362373352 |
| keywords[11].display_name | Chemistry |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.1830587387084961 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/in-silico |
| keywords[13].score | 0.1752040684223175 |
| keywords[13].display_name | In silico |
| keywords[14].id | https://openalex.org/keywords/biochemistry |
| keywords[14].score | 0.07146695256233215 |
| keywords[14].display_name | Biochemistry |
| language | en |
| locations[0].id | doi:10.1021/acsomega.2c05826 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239500 |
| locations[0].source.issn | 2470-1343 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2470-1343 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ACS Omega |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACS Omega |
| locations[0].landing_page_url | https://doi.org/10.1021/acsomega.2c05826 |
| locations[1].id | pmid:36340123 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ACS omega |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36340123 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9632257 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ACS Omega |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9632257 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5026894120 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8706-897X |
| authorships[0].author.display_name | Xu Min |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210086405 |
| authorships[0].affiliations[0].raw_affiliation_string | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I25254941 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China |
| authorships[0].institutions[0].id | https://openalex.org/I25254941 |
| authorships[0].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Normal University |
| authorships[0].institutions[1].id | https://openalex.org/I4210086405 |
| authorships[0].institutions[1].ror | https://ror.org/00wksha49 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210086405 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | National Institute of Biological Sciences, Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Min Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China, National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[1].author.id | https://openalex.org/A5102000226 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8888-3316 |
| authorships[1].author.display_name | Cheng Shen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[1].affiliations[0].raw_affiliation_string | Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, No. 9, Dongdan Santiao, Dongcheng District, Beijing 100730, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210086405 |
| authorships[1].affiliations[1].raw_affiliation_string | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[1].institutions[0].id | https://openalex.org/I200296433 |
| authorships[1].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[1].institutions[1].id | https://openalex.org/I4210086405 |
| authorships[1].institutions[1].ror | https://ror.org/00wksha49 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210086405 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | National Institute of Biological Sciences, Beijing |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cheng Shen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, No. 9, Dongdan Santiao, Dongcheng District, Beijing 100730, China, National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[2].author.id | https://openalex.org/A5044785440 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0033-0187 |
| authorships[2].author.display_name | Jincai Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210086405 |
| authorships[2].affiliations[0].raw_affiliation_string | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210086405 |
| authorships[2].institutions[0].ror | https://ror.org/00wksha49 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210086405 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Institute of Biological Sciences, Beijing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jincai Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[3].author.id | https://openalex.org/A5048815132 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1155-2340 |
| authorships[3].author.display_name | Qing Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210086405 |
| authorships[3].affiliations[0].raw_affiliation_string | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I162868743 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210086405 |
| authorships[3].institutions[0].ror | https://ror.org/00wksha49 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210086405 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National Institute of Biological Sciences, Beijing |
| authorships[3].institutions[1].id | https://openalex.org/I162868743 |
| authorships[3].institutions[1].ror | https://ror.org/012tb2g32 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I162868743 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Tianjin University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qing Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China |
| authorships[4].author.id | https://openalex.org/A5074665620 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6912-033X |
| authorships[4].author.display_name | Niu Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210086405 |
| authorships[4].affiliations[1].raw_affiliation_string | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210086405 |
| authorships[4].institutions[0].ror | https://ror.org/00wksha49 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210086405 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National Institute of Biological Sciences, Beijing |
| authorships[4].institutions[1].id | https://openalex.org/I99065089 |
| authorships[4].institutions[1].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Tsinghua University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Niu Huang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1021/acsomega.2c05826 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4282913408, https://openalex.org/W2336040088, https://openalex.org/W2136513242, https://openalex.org/W2766845742, https://openalex.org/W2057846043, https://openalex.org/W2058674645, https://openalex.org/W4385073511, https://openalex.org/W1594539819, https://openalex.org/W2100436540, https://openalex.org/W2149658535 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1021/acsomega.2c05826 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239500 |
| best_oa_location.source.issn | 2470-1343 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2470-1343 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ACS Omega |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACS Omega |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acsomega.2c05826 |
| primary_location.id | doi:10.1021/acsomega.2c05826 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239500 |
| primary_location.source.issn | 2470-1343 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2470-1343 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ACS Omega |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACS Omega |
| primary_location.landing_page_url | https://doi.org/10.1021/acsomega.2c05826 |
| publication_date | 2022-10-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2074978477, https://openalex.org/W2047509756, https://openalex.org/W2274656763, https://openalex.org/W2199426173, https://openalex.org/W2757421225, https://openalex.org/W2935701257, https://openalex.org/W2912171584, https://openalex.org/W2325391880, https://openalex.org/W2298914518, https://openalex.org/W1526205344, https://openalex.org/W2042694699, https://openalex.org/W4225286967, https://openalex.org/W2125957493, https://openalex.org/W2512819857, https://openalex.org/W3004731690, https://openalex.org/W4200289210, https://openalex.org/W4221132229, https://openalex.org/W3010016408, https://openalex.org/W3177828909, https://openalex.org/W2145682943, https://openalex.org/W2073021822, https://openalex.org/W2000350990, https://openalex.org/W2058835307, https://openalex.org/W2134967712, https://openalex.org/W2127760066, https://openalex.org/W1968319881, https://openalex.org/W2124074156, https://openalex.org/W2109817765, https://openalex.org/W2067455153, https://openalex.org/W2171234651, https://openalex.org/W2135735638, https://openalex.org/W2142182637, https://openalex.org/W2040026546, https://openalex.org/W2084266282, https://openalex.org/W2099900074, https://openalex.org/W2078374001, https://openalex.org/W2105668062, https://openalex.org/W2336040088, https://openalex.org/W2183050958, https://openalex.org/W2969723317, https://openalex.org/W2042110087, https://openalex.org/W2076481851, https://openalex.org/W2001428495, https://openalex.org/W2220825152, https://openalex.org/W2319902168, https://openalex.org/W2130479394, https://openalex.org/W3104537585, https://openalex.org/W2169678694, https://openalex.org/W2982055388, https://openalex.org/W2978652919, https://openalex.org/W2925328267, https://openalex.org/W2896759019, https://openalex.org/W2011301426, https://openalex.org/W2092285329, https://openalex.org/W2097420030, https://openalex.org/W3132447912, https://openalex.org/W3201539868, https://openalex.org/W3197817556, https://openalex.org/W2132629607, https://openalex.org/W2168833646, https://openalex.org/W3172303648, https://openalex.org/W2060874643, https://openalex.org/W1975547196, https://openalex.org/W1992999907, https://openalex.org/W4248324024, https://openalex.org/W2004069611, https://openalex.org/W1191502296, https://openalex.org/W2104906259, https://openalex.org/W2047013479, https://openalex.org/W2019256988, https://openalex.org/W2057614284, https://openalex.org/W2903057651, https://openalex.org/W2052420006, https://openalex.org/W2160136723, https://openalex.org/W2055563962, https://openalex.org/W2094468748, https://openalex.org/W1999676874 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 104, 132, 152 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 23 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 40, 67, 87 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 11, 15, 32, 52, 73, 127, 135 |
| abstract_inverted_index.on | 70, 131 |
| abstract_inverted_index.to | 19, 26, 35 |
| abstract_inverted_index.we | 44, 142, 150 |
| abstract_inverted_index.3.7 | 59, 64, 92 |
| abstract_inverted_index.and | 30, 50, 60, 163 |
| abstract_inverted_index.few | 153 |
| abstract_inverted_index.for | 13, 158 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.six | 139 |
| abstract_inverted_index.the | 28, 37, 47, 71, 99, 113, 125, 144 |
| abstract_inverted_index.two | 53 |
| abstract_inverted_index.Both | 112 |
| abstract_inverted_index.DOCK | 58, 63, 91 |
| abstract_inverted_index.UCSF | 57 |
| abstract_inverted_index.Vina | 100 |
| abstract_inverted_index.also | 93 |
| abstract_inverted_index.bias | 105 |
| abstract_inverted_index.both | 81 |
| abstract_inverted_index.data | 78 |
| abstract_inverted_index.drug | 21 |
| abstract_inverted_index.from | 138 |
| abstract_inverted_index.rate | 39 |
| abstract_inverted_index.set, | 79 |
| abstract_inverted_index.were | 84 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.Based | 130 |
| abstract_inverted_index.Here, | 43 |
| abstract_inverted_index.Vina. | 62 |
| abstract_inverted_index.early | 68 |
| abstract_inverted_index.novel | 16 |
| abstract_inverted_index.poses | 122 |
| abstract_inverted_index.Useful | 74 |
| abstract_inverted_index.better | 66 |
| abstract_inverted_index.cases, | 141 |
| abstract_inverted_index.caused | 123 |
| abstract_inverted_index.future | 164 |
| abstract_inverted_index.higher | 109 |
| abstract_inverted_index.levels | 10 |
| abstract_inverted_index.ligand | 120 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.showed | 94, 103 |
| abstract_inverted_index.tested | 114 |
| abstract_inverted_index.toward | 106 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.(DUD-E) | 77 |
| abstract_inverted_index.Decoys: | 75 |
| abstract_inverted_index.binding | 121 |
| abstract_inverted_index.careful | 133 |
| abstract_inverted_index.docking | 33, 48, 55, 82, 115, 136, 147, 165 |
| abstract_inverted_index.methods | 83 |
| abstract_inverted_index.overall | 88 |
| abstract_inverted_index.propose | 143 |
| abstract_inverted_index.provide | 151 |
| abstract_inverted_index.reasons | 145 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.roughly | 85 |
| abstract_inverted_index.scoring | 101 |
| abstract_inverted_index.success | 38 |
| abstract_inverted_index.torsion | 128 |
| abstract_inverted_index.virtual | 5, 160 |
| abstract_inverted_index.yielded | 117 |
| abstract_inverted_index.AutoDock | 61 |
| abstract_inverted_index.Enhanced | 76 |
| abstract_inverted_index.although | 80 |
| abstract_inverted_index.analysis | 134 |
| abstract_inverted_index.critical | 25 |
| abstract_inverted_index.failures | 51 |
| abstract_inverted_index.function | 102 |
| abstract_inverted_index.guidance | 157 |
| abstract_inverted_index.increase | 36 |
| abstract_inverted_index.interest | 12 |
| abstract_inverted_index.superior | 95 |
| abstract_inverted_index.targets. | 22 |
| abstract_inverted_index.weights. | 111 |
| abstract_inverted_index.Directory | 72 |
| abstract_inverted_index.algorithm | 166 |
| abstract_inverted_index.attracted | 8 |
| abstract_inverted_index.campaigns | 162 |
| abstract_inverted_index.compounds | 17, 107 |
| abstract_inverted_index.failures; | 148 |
| abstract_inverted_index.molecular | 110 |
| abstract_inverted_index.performed | 65 |
| abstract_inverted_index.potential | 20 |
| abstract_inverted_index.practical | 41, 156 |
| abstract_inverted_index.predicted | 119 |
| abstract_inverted_index.programs: | 56 |
| abstract_inverted_index.sampling. | 129 |
| abstract_inverted_index.screening | 6, 161 |
| abstract_inverted_index.strengths | 29 |
| abstract_inverted_index.successes | 49 |
| abstract_inverted_index.algorithms | 34 |
| abstract_inverted_index.approaches | 116 |
| abstract_inverted_index.comparable | 86 |
| abstract_inverted_index.enrichment | 69, 89 |
| abstract_inverted_index.increasing | 9 |
| abstract_inverted_index.solutions, | 154 |
| abstract_inverted_index.underlying | 146 |
| abstract_inverted_index.understand | 27 |
| abstract_inverted_index.weaknesses | 31 |
| abstract_inverted_index.efficiency. | 97 |
| abstract_inverted_index.incorrectly | 118 |
| abstract_inverted_index.large-scale | 3, 159 |
| abstract_inverted_index.limitations | 126 |
| abstract_inverted_index.development. | 167 |
| abstract_inverted_index.furthermore, | 149 |
| abstract_inverted_index.investigated | 46 |
| abstract_inverted_index.performance. | 90 |
| abstract_inverted_index.representing | 155 |
| abstract_inverted_index.Intriguingly, | 98 |
| abstract_inverted_index.applications. | 42 |
| abstract_inverted_index.computational | 96 |
| abstract_inverted_index.corresponding | 18 |
| abstract_inverted_index.identification | 14 |
| abstract_inverted_index.representative | 54, 140 |
| abstract_inverted_index.systematically | 45 |
| abstract_inverted_index.structure-based | 4 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5074665620 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210086405, https://openalex.org/I99065089 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.94316114 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |