Systematic Selection of Age-Associated mRNA Markers and the Development of Predicted Models for Forensic Age Inference by Three Machine Learning Methods Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fgene.2022.924408
Aging is usually accompanied by the decline of physiological function and dysfunction of cellular processes. Genetic markers related to aging not only reveal the biological mechanism of aging but also provide age information in forensic research. In this study, we aimed to screen age-associated mRNAs based on the previously reported genome-wide expression data. In addition, predicted models for age estimations were built by three machine learning methods. We identified 283 differentially expressed mRNAs between two groups with different age ranges. Nine mRNAs out of 283 mRNAs showed different expression patterns between smokers and non-smokers and were eliminated from the following analysis. Age-associated mRNAs were further screened from the remaining mRNAs by the cross-validation error analysis of random forest. Finally, 14 mRNAs were chosen to build the model for age predictions. These 14 mRNAs showed relatively high correlations with age. Furthermore, we found that random forest showed the optimal performance for age prediction in comparison to the generalized linear model and support vector machine. To sum up, the 14 age-associated mRNAs identified in this study could be viewed as valuable markers for age estimations and studying the aging process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fgene.2022.924408
- OA Status
- gold
- Cited By
- 5
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283757466
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283757466Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fgene.2022.924408Digital Object Identifier
- Title
-
Systematic Selection of Age-Associated mRNA Markers and the Development of Predicted Models for Forensic Age Inference by Three Machine Learning MethodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-01Full publication date if available
- Authors
-
Xiaoye Jin, Zheng Ren, Hongling Zhang, Qiyan Wang, Yubo Liu, Jingyan Ji, Jiang HuangList of authors in order
- Landing page
-
https://doi.org/10.3389/fgene.2022.924408Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fgene.2022.924408Direct OA link when available
- Concepts
-
Random forest, Biology, Computational biology, Inference, Support vector machine, Biological age, Machine learning, Messenger RNA, Gene expression, Expression (computer science), Selection (genetic algorithm), Ageing, Bioinformatics, Artificial intelligence, Genetics, Evolutionary biology, Computer science, Gene, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283757466 |
|---|---|
| doi | https://doi.org/10.3389/fgene.2022.924408 |
| ids.doi | https://doi.org/10.3389/fgene.2022.924408 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35846135 |
| ids.openalex | https://openalex.org/W4283757466 |
| fwci | 0.61534579 |
| type | article |
| title | Systematic Selection of Age-Associated mRNA Markers and the Development of Predicted Models for Forensic Age Inference by Three Machine Learning Methods |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 924408 |
| biblio.first_page | 924408 |
| topics[0].id | https://openalex.org/T10269 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9914000034332275 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Epigenetics and DNA Methylation |
| topics[1].id | https://openalex.org/T10062 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9882000088691711 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | MicroRNA in disease regulation |
| topics[2].id | https://openalex.org/T10515 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer-related molecular mechanisms research |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C169258074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6668373346328735 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[0].display_name | Random forest |
| concepts[1].id | https://openalex.org/C86803240 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5868366360664368 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[1].display_name | Biology |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5352872610092163 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5088682174682617 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49340954422950745 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C2991747559 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4408223330974579 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4915075 |
| concepts[5].display_name | Biological age |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4346489906311035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C105580179 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4335242509841919 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188928 |
| concepts[7].display_name | Messenger RNA |
| concepts[8].id | https://openalex.org/C150194340 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43319568037986755 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[8].display_name | Gene expression |
| concepts[9].id | https://openalex.org/C90559484 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42478200793266296 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[9].display_name | Expression (computer science) |
| concepts[10].id | https://openalex.org/C81917197 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41317468881607056 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[10].display_name | Selection (genetic algorithm) |
| concepts[11].id | https://openalex.org/C500499127 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41171568632125854 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q332154 |
| concepts[11].display_name | Ageing |
| concepts[12].id | https://openalex.org/C60644358 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38698652386665344 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[12].display_name | Bioinformatics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35758548974990845 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3526425361633301 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| concepts[15].id | https://openalex.org/C78458016 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3282793462276459 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[15].display_name | Evolutionary biology |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.3259679675102234 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.29066145420074463 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/random-forest |
| keywords[0].score | 0.6668373346328735 |
| keywords[0].display_name | Random forest |
| keywords[1].id | https://openalex.org/keywords/biology |
| keywords[1].score | 0.5868366360664368 |
| keywords[1].display_name | Biology |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.5352872610092163 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5088682174682617 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.49340954422950745 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/biological-age |
| keywords[5].score | 0.4408223330974579 |
| keywords[5].display_name | Biological age |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4346489906311035 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/messenger-rna |
| keywords[7].score | 0.4335242509841919 |
| keywords[7].display_name | Messenger RNA |
| keywords[8].id | https://openalex.org/keywords/gene-expression |
| keywords[8].score | 0.43319568037986755 |
| keywords[8].display_name | Gene expression |
| keywords[9].id | https://openalex.org/keywords/expression |
| keywords[9].score | 0.42478200793266296 |
| keywords[9].display_name | Expression (computer science) |
| keywords[10].id | https://openalex.org/keywords/selection |
| keywords[10].score | 0.41317468881607056 |
| keywords[10].display_name | Selection (genetic algorithm) |
| keywords[11].id | https://openalex.org/keywords/ageing |
| keywords[11].score | 0.41171568632125854 |
| keywords[11].display_name | Ageing |
| keywords[12].id | https://openalex.org/keywords/bioinformatics |
| keywords[12].score | 0.38698652386665344 |
| keywords[12].display_name | Bioinformatics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.35758548974990845 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/genetics |
| keywords[14].score | 0.3526425361633301 |
| keywords[14].display_name | Genetics |
| keywords[15].id | https://openalex.org/keywords/evolutionary-biology |
| keywords[15].score | 0.3282793462276459 |
| keywords[15].display_name | Evolutionary biology |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.3259679675102234 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/gene |
| keywords[17].score | 0.29066145420074463 |
| keywords[17].display_name | Gene |
| language | en |
| locations[0].id | doi:10.3389/fgene.2022.924408 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2597340651 |
| locations[0].source.issn | 1664-8021 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-8021 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Genetics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Genetics |
| locations[0].landing_page_url | https://doi.org/10.3389/fgene.2022.924408 |
| locations[1].id | pmid:35846135 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in genetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35846135 |
| locations[2].id | pmh:oai:doaj.org/article:a24c2d537f724ab7beed8b68fe991dcf |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Genetics, Vol 13 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/a24c2d537f724ab7beed8b68fe991dcf |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9283997 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Genet |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9283997 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5017722081 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5250-1160 |
| authorships[0].author.display_name | Xiaoye Jin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I149137203 |
| authorships[0].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guiyang Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoye Jin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[1].author.id | https://openalex.org/A5101784381 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0794-0110 |
| authorships[1].author.display_name | Zheng Ren |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I149137203 |
| authorships[1].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guiyang Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng Ren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[2].author.id | https://openalex.org/A5101507988 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hongling Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I149137203 |
| authorships[2].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guiyang Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongling Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[3].author.id | https://openalex.org/A5115695395 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Qiyan Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[3].institutions[0].id | https://openalex.org/I149137203 |
| authorships[3].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guiyang Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qiyan Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[4].author.id | https://openalex.org/A5100747047 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0645-0822 |
| authorships[4].author.display_name | Yubo Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[4].institutions[0].id | https://openalex.org/I149137203 |
| authorships[4].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guiyang Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yubo Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[5].author.id | https://openalex.org/A5088905572 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0788-2539 |
| authorships[5].author.display_name | Jingyan Ji |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[5].institutions[0].id | https://openalex.org/I149137203 |
| authorships[5].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guiyang Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jingyan Ji |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[6].author.id | https://openalex.org/A5100685041 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8475-2055 |
| authorships[6].author.display_name | Jiang Huang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I149137203 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| authorships[6].institutions[0].id | https://openalex.org/I149137203 |
| authorships[6].institutions[0].ror | https://ror.org/035y7a716 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I149137203 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Guiyang Medical University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jiang Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Forensic Medicine, Guizhou Medical University, Guiyang, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fgene.2022.924408 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Systematic Selection of Age-Associated mRNA Markers and the Development of Predicted Models for Forensic Age Inference by Three Machine Learning Methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10269 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9914000034332275 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Epigenetics and DNA Methylation |
| related_works | https://openalex.org/W4200112873, https://openalex.org/W2955796858, https://openalex.org/W4224941037, https://openalex.org/W2004826645, https://openalex.org/W3135818052, https://openalex.org/W2416131013, https://openalex.org/W1553482660, https://openalex.org/W4378625401, https://openalex.org/W2900460662, https://openalex.org/W2129546419 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fgene.2022.924408 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2597340651 |
| best_oa_location.source.issn | 1664-8021 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-8021 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Genetics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Genetics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fgene.2022.924408 |
| primary_location.id | doi:10.3389/fgene.2022.924408 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2597340651 |
| primary_location.source.issn | 1664-8021 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-8021 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Genetics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Genetics |
| primary_location.landing_page_url | https://doi.org/10.3389/fgene.2022.924408 |
| publication_date | 2022-07-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2108700752, https://openalex.org/W2979345825, https://openalex.org/W2610284609, https://openalex.org/W3018213872, https://openalex.org/W2790875946, https://openalex.org/W4252426195, https://openalex.org/W2989484669, https://openalex.org/W2899420672, https://openalex.org/W2765546416, https://openalex.org/W2397777506, https://openalex.org/W2159914115, https://openalex.org/W1996813968, https://openalex.org/W2796210511, https://openalex.org/W2010457001, https://openalex.org/W2982320759, https://openalex.org/W2126525177, https://openalex.org/W2783205838, https://openalex.org/W2962600684, https://openalex.org/W2173367702, https://openalex.org/W2094250191, https://openalex.org/W2739955173, https://openalex.org/W1989271916, https://openalex.org/W3093143628, https://openalex.org/W2047837749, https://openalex.org/W4210764151, https://openalex.org/W2525984666, https://openalex.org/W2406249070, https://openalex.org/W4206630622 |
| referenced_works_count | 28 |
| abstract_inverted_index.14 | 119, 131, 167 |
| abstract_inverted_index.In | 36, 53 |
| abstract_inverted_index.To | 163 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.as | 177 |
| abstract_inverted_index.be | 175 |
| abstract_inverted_index.by | 4, 62, 110 |
| abstract_inverted_index.in | 33, 152, 171 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 7, 12, 26, 83, 115 |
| abstract_inverted_index.on | 46 |
| abstract_inverted_index.to | 18, 41, 123, 154 |
| abstract_inverted_index.we | 39, 140 |
| abstract_inverted_index.283 | 69, 84 |
| abstract_inverted_index.age | 31, 58, 78, 128, 150, 181 |
| abstract_inverted_index.and | 10, 92, 94, 159, 183 |
| abstract_inverted_index.but | 28 |
| abstract_inverted_index.for | 57, 127, 149, 180 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.out | 82 |
| abstract_inverted_index.sum | 164 |
| abstract_inverted_index.the | 5, 23, 47, 98, 107, 111, 125, 146, 155, 166, 185 |
| abstract_inverted_index.two | 74 |
| abstract_inverted_index.up, | 165 |
| abstract_inverted_index.Nine | 80 |
| abstract_inverted_index.age. | 138 |
| abstract_inverted_index.also | 29 |
| abstract_inverted_index.from | 97, 106 |
| abstract_inverted_index.high | 135 |
| abstract_inverted_index.only | 21 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 37, 172 |
| abstract_inverted_index.were | 60, 95, 103, 121 |
| abstract_inverted_index.with | 76, 137 |
| abstract_inverted_index.Aging | 0 |
| abstract_inverted_index.These | 130 |
| abstract_inverted_index.aging | 19, 27, 186 |
| abstract_inverted_index.aimed | 40 |
| abstract_inverted_index.based | 45 |
| abstract_inverted_index.build | 124 |
| abstract_inverted_index.built | 61 |
| abstract_inverted_index.could | 174 |
| abstract_inverted_index.data. | 52 |
| abstract_inverted_index.error | 113 |
| abstract_inverted_index.found | 141 |
| abstract_inverted_index.mRNAs | 44, 72, 81, 85, 102, 109, 120, 132, 169 |
| abstract_inverted_index.model | 126, 158 |
| abstract_inverted_index.study | 173 |
| abstract_inverted_index.three | 63 |
| abstract_inverted_index.chosen | 122 |
| abstract_inverted_index.forest | 144 |
| abstract_inverted_index.groups | 75 |
| abstract_inverted_index.linear | 157 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.random | 116, 143 |
| abstract_inverted_index.reveal | 22 |
| abstract_inverted_index.screen | 42 |
| abstract_inverted_index.showed | 86, 133, 145 |
| abstract_inverted_index.study, | 38 |
| abstract_inverted_index.vector | 161 |
| abstract_inverted_index.viewed | 176 |
| abstract_inverted_index.Genetic | 15 |
| abstract_inverted_index.between | 73, 90 |
| abstract_inverted_index.decline | 6 |
| abstract_inverted_index.forest. | 117 |
| abstract_inverted_index.further | 104 |
| abstract_inverted_index.machine | 64 |
| abstract_inverted_index.markers | 16, 179 |
| abstract_inverted_index.optimal | 147 |
| abstract_inverted_index.provide | 30 |
| abstract_inverted_index.ranges. | 79 |
| abstract_inverted_index.related | 17 |
| abstract_inverted_index.smokers | 91 |
| abstract_inverted_index.support | 160 |
| abstract_inverted_index.usually | 2 |
| abstract_inverted_index.Finally, | 118 |
| abstract_inverted_index.analysis | 114 |
| abstract_inverted_index.cellular | 13 |
| abstract_inverted_index.forensic | 34 |
| abstract_inverted_index.function | 9 |
| abstract_inverted_index.learning | 65 |
| abstract_inverted_index.machine. | 162 |
| abstract_inverted_index.methods. | 66 |
| abstract_inverted_index.patterns | 89 |
| abstract_inverted_index.process. | 187 |
| abstract_inverted_index.reported | 49 |
| abstract_inverted_index.screened | 105 |
| abstract_inverted_index.studying | 184 |
| abstract_inverted_index.valuable | 178 |
| abstract_inverted_index.addition, | 54 |
| abstract_inverted_index.analysis. | 100 |
| abstract_inverted_index.different | 77, 87 |
| abstract_inverted_index.expressed | 71 |
| abstract_inverted_index.following | 99 |
| abstract_inverted_index.mechanism | 25 |
| abstract_inverted_index.predicted | 55 |
| abstract_inverted_index.remaining | 108 |
| abstract_inverted_index.research. | 35 |
| abstract_inverted_index.biological | 24 |
| abstract_inverted_index.comparison | 153 |
| abstract_inverted_index.eliminated | 96 |
| abstract_inverted_index.expression | 51, 88 |
| abstract_inverted_index.identified | 68, 170 |
| abstract_inverted_index.prediction | 151 |
| abstract_inverted_index.previously | 48 |
| abstract_inverted_index.processes. | 14 |
| abstract_inverted_index.relatively | 134 |
| abstract_inverted_index.accompanied | 3 |
| abstract_inverted_index.dysfunction | 11 |
| abstract_inverted_index.estimations | 59, 182 |
| abstract_inverted_index.generalized | 156 |
| abstract_inverted_index.genome-wide | 50 |
| abstract_inverted_index.information | 32 |
| abstract_inverted_index.non-smokers | 93 |
| abstract_inverted_index.performance | 148 |
| abstract_inverted_index.Furthermore, | 139 |
| abstract_inverted_index.correlations | 136 |
| abstract_inverted_index.predictions. | 129 |
| abstract_inverted_index.physiological | 8 |
| abstract_inverted_index.Age-associated | 101 |
| abstract_inverted_index.age-associated | 43, 168 |
| abstract_inverted_index.differentially | 70 |
| abstract_inverted_index.cross-validation | 112 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.610047 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |