T-Structures as Classifying Objects for Exact Structures on Triangulated Categories Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17830351
This paper investigates the role of t-structures as classifying objects for exact structures on triangulated categories. We demonstrate that the heart of a t-structure, under suitable conditions, can be equipped with an exact structure that is uniquely determined by the t-structure. Furthermore, we explore the converse, examining when a given exact structure on a triangulated category can be realized as the heart of a t-structure. We introduce a novel framework for comparing different exact structures via t-structures, providing tools for understanding the relationships between various homological structures on triangulated categories. This study has implications for representation theory, algebraic geometry, and the homological study of singularities, providing new insights and paving the way for further research into the interplay between triangulated and exact categories.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17830351
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7109165865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7109165865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17830351Digital Object Identifier
- Title
-
T-Structures as Classifying Objects for Exact Structures on Triangulated CategoriesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Revista, Zen, MATH, 10List of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17830351Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17830351Direct OA link when available
- Concepts
-
Triangulated category, Representation (politics), Mathematics, Triangulation, Computer science, Algebraic structure, Algebra over a field, Theoretical computer science, Data structure, Homological algebra, Algebraic number, Object (grammar), Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7109165865 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17830351 |
| ids.doi | https://doi.org/10.5281/zenodo.17830351 |
| ids.openalex | https://openalex.org/W7109165865 |
| fwci | 0.0 |
| type | article |
| title | T-Structures as Classifying Objects for Exact Structures on Triangulated Categories |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10896 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.6598418354988098 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Homotopy and Cohomology in Algebraic Topology |
| topics[1].id | https://openalex.org/T10287 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.08440258353948593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Algebraic structures and combinatorial models |
| topics[2].id | https://openalex.org/T12536 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.08185221999883652 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Topological and Geometric Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780212368 |
| concepts[0].level | 4 |
| concepts[0].score | 0.5940290093421936 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7840150 |
| concepts[0].display_name | Triangulated category |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5726872682571411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5304642915725708 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C135981907 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45343339443206787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188056 |
| concepts[3].display_name | Triangulation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4310718774795532 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C182419690 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41557613015174866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205464 |
| concepts[5].display_name | Algebraic structure |
| concepts[6].id | https://openalex.org/C136119220 |
| concepts[6].level | 2 |
| concepts[6].score | 0.40846309065818787 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[6].display_name | Algebra over a field |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38343092799186707 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C162319229 |
| concepts[8].level | 2 |
| concepts[8].score | 0.35301342606544495 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175263 |
| concepts[8].display_name | Data structure |
| concepts[9].id | https://openalex.org/C18364862 |
| concepts[9].level | 3 |
| concepts[9].score | 0.3495822250843048 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q579978 |
| concepts[9].display_name | Homological algebra |
| concepts[10].id | https://openalex.org/C9376300 |
| concepts[10].level | 2 |
| concepts[10].score | 0.34042567014694214 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[10].display_name | Algebraic number |
| concepts[11].id | https://openalex.org/C2781238097 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3277721107006073 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[11].display_name | Object (grammar) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.31167811155319214 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/triangulated-category |
| keywords[0].score | 0.5940290093421936 |
| keywords[0].display_name | Triangulated category |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.5726872682571411 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/triangulation |
| keywords[2].score | 0.45343339443206787 |
| keywords[2].display_name | Triangulation |
| keywords[3].id | https://openalex.org/keywords/algebraic-structure |
| keywords[3].score | 0.41557613015174866 |
| keywords[3].display_name | Algebraic structure |
| keywords[4].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[4].score | 0.40846309065818787 |
| keywords[4].display_name | Algebra over a field |
| keywords[5].id | https://openalex.org/keywords/data-structure |
| keywords[5].score | 0.35301342606544495 |
| keywords[5].display_name | Data structure |
| language | |
| locations[0].id | doi:10.5281/zenodo.17830351 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17830351 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Revista, Zen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Revista, Zen |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | MATH, 10 |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | MATH, 10 |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17830351 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-06T00:00:00 |
| display_name | T-Structures as Classifying Objects for Exact Structures on Triangulated Categories |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:14:57.273132 |
| primary_topic.id | https://openalex.org/T10896 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.6598418354988098 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Homotopy and Cohomology in Algebraic Topology |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17830351 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17830351 |
| primary_location.id | doi:10.5281/zenodo.17830351 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17830351 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 48, 53, 63, 67 |
| abstract_inverted_index.We | 16, 65 |
| abstract_inverted_index.an | 31 |
| abstract_inverted_index.as | 7, 59 |
| abstract_inverted_index.be | 28, 57 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.of | 5, 21, 62, 103 |
| abstract_inverted_index.on | 13, 52, 87 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.and | 99, 108, 120 |
| abstract_inverted_index.can | 27, 56 |
| abstract_inverted_index.for | 10, 70, 79, 94, 112 |
| abstract_inverted_index.has | 92 |
| abstract_inverted_index.new | 106 |
| abstract_inverted_index.the | 3, 19, 39, 44, 60, 81, 100, 110, 116 |
| abstract_inverted_index.via | 75 |
| abstract_inverted_index.way | 111 |
| abstract_inverted_index.This | 0, 90 |
| abstract_inverted_index.into | 115 |
| abstract_inverted_index.role | 4 |
| abstract_inverted_index.that | 18, 34 |
| abstract_inverted_index.when | 47 |
| abstract_inverted_index.with | 30 |
| abstract_inverted_index.exact | 11, 32, 50, 73, 121 |
| abstract_inverted_index.given | 49 |
| abstract_inverted_index.heart | 20, 61 |
| abstract_inverted_index.novel | 68 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.study | 91, 102 |
| abstract_inverted_index.tools | 78 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.paving | 109 |
| abstract_inverted_index.between | 83, 118 |
| abstract_inverted_index.explore | 43 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.objects | 9 |
| abstract_inverted_index.theory, | 96 |
| abstract_inverted_index.various | 84 |
| abstract_inverted_index.category | 55 |
| abstract_inverted_index.equipped | 29 |
| abstract_inverted_index.insights | 107 |
| abstract_inverted_index.realized | 58 |
| abstract_inverted_index.research | 114 |
| abstract_inverted_index.suitable | 25 |
| abstract_inverted_index.uniquely | 36 |
| abstract_inverted_index.algebraic | 97 |
| abstract_inverted_index.comparing | 71 |
| abstract_inverted_index.converse, | 45 |
| abstract_inverted_index.different | 72 |
| abstract_inverted_index.examining | 46 |
| abstract_inverted_index.framework | 69 |
| abstract_inverted_index.geometry, | 98 |
| abstract_inverted_index.interplay | 117 |
| abstract_inverted_index.introduce | 66 |
| abstract_inverted_index.providing | 77, 105 |
| abstract_inverted_index.structure | 33, 51 |
| abstract_inverted_index.determined | 37 |
| abstract_inverted_index.structures | 12, 74, 86 |
| abstract_inverted_index.categories. | 15, 89, 122 |
| abstract_inverted_index.classifying | 8 |
| abstract_inverted_index.conditions, | 26 |
| abstract_inverted_index.demonstrate | 17 |
| abstract_inverted_index.homological | 85, 101 |
| abstract_inverted_index.Furthermore, | 41 |
| abstract_inverted_index.implications | 93 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.t-structure, | 23 |
| abstract_inverted_index.t-structure. | 40, 64 |
| abstract_inverted_index.t-structures | 6 |
| abstract_inverted_index.triangulated | 14, 54, 88, 119 |
| abstract_inverted_index.relationships | 82 |
| abstract_inverted_index.t-structures, | 76 |
| abstract_inverted_index.understanding | 80 |
| abstract_inverted_index.representation | 95 |
| abstract_inverted_index.singularities, | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.88387732 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |