TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.17528
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training in edge computing environments. Prior works have proposed various methods to mitigate this statistical heterogeneity. While these works can achieve good theoretical performance, in this work we provide the first investigation into a hidden over-correction phenomenon brought by the uniform model correction coefficients across clients adopted by existing methods. Such over-correction could degrade model performance and even cause failures in model convergence. To address this, we propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation, steering local models towards a more accurate global optimum. Moreover, we verify that leading FL algorithms generally have better model accuracy in terms of communication rounds rather than wall-clock time, resulting from their extra computation overhead imposed on clients. To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum computation overhead and no extra information beyond the synchronized model parameters. To validate TACO's effectiveness, we present the first FL convergence analysis that reveals the root cause of over-correction. Extensive experiments across various datasets confirm TACO's superior and stable performance in practice.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.17528
- https://arxiv.org/pdf/2504.17528
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415064098
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415064098Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.17528Digital Object Identifier
- Title
-
TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive CorrectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-24Full publication date if available
- Authors
-
Weijie Liu, Ziwei Zhan, Carlee Joe‐Wong, Edith C.‐H. Ngai, Jingpu Duan, Deke Guo, Xu Chen, Xiaoxi ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.17528Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.17528Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.17528Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415064098 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.17528 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.17528 |
| ids.openalex | https://openalex.org/W4415064098 |
| fwci | |
| type | preprint |
| title | TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9323999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.901199996471405 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.17528 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.17528 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.17528 |
| locations[1].id | doi:10.48550/arxiv.2504.17528 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.17528 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103114850 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-0539-3293 |
| authorships[0].author.display_name | Weijie Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Weijie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107890053 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-7517-4096 |
| authorships[1].author.display_name | Ziwei Zhan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhan, Ziwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085243096 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0785-9291 |
| authorships[2].author.display_name | Carlee Joe‐Wong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joe-Wong, Carlee |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5077317339 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3454-8731 |
| authorships[3].author.display_name | Edith C.‐H. Ngai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ngai, Edith |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5016658545 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7507-2197 |
| authorships[4].author.display_name | Jingpu Duan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Duan, Jingpu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032623398 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4894-5540 |
| authorships[5].author.display_name | Deke Guo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guo, Deke |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100385692 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9943-6020 |
| authorships[6].author.display_name | Xu Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Xu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5109581650 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Xiaoxi Zhang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Zhang, Xiaoxi |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.17528 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.17528 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.17528 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.17528 |
| primary_location.id | pmh:oai:arXiv.org:2504.17528 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.17528 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.17528 |
| publication_date | 2025-04-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 51, 87, 111, 153 |
| abstract_inverted_index.FL | 121, 183 |
| abstract_inverted_index.To | 81, 146, 175 |
| abstract_inverted_index.by | 56, 65, 98 |
| abstract_inverted_index.in | 19, 42, 78, 128, 204 |
| abstract_inverted_index.no | 167 |
| abstract_inverted_index.of | 95, 130, 191 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.to | 14, 29 |
| abstract_inverted_index.we | 45, 84, 117, 179 |
| abstract_inverted_index.and | 1, 74, 104, 157, 166, 201 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.the | 47, 57, 92, 148, 171, 181, 188 |
| abstract_inverted_index.(FL) | 17 |
| abstract_inverted_index.Such | 68 |
| abstract_inverted_index.TACO | 151 |
| abstract_inverted_index.data | 5, 97 |
| abstract_inverted_index.edge | 7, 20 |
| abstract_inverted_index.even | 75 |
| abstract_inverted_index.from | 138 |
| abstract_inverted_index.good | 39 |
| abstract_inverted_index.have | 9, 25, 124 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.long | 10 |
| abstract_inverted_index.more | 112 |
| abstract_inverted_index.root | 189 |
| abstract_inverted_index.than | 134 |
| abstract_inverted_index.that | 90, 119, 161, 186 |
| abstract_inverted_index.this | 31, 43 |
| abstract_inverted_index.work | 44 |
| abstract_inverted_index.Prior | 23 |
| abstract_inverted_index.TACO, | 86 |
| abstract_inverted_index.While | 34 |
| abstract_inverted_index.cause | 76, 190 |
| abstract_inverted_index.could | 70 |
| abstract_inverted_index.extra | 140, 168 |
| abstract_inverted_index.first | 48, 182 |
| abstract_inverted_index.local | 108 |
| abstract_inverted_index.model | 59, 72, 79, 105, 126, 155, 173 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.posed | 11 |
| abstract_inverted_index.terms | 129 |
| abstract_inverted_index.their | 139 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.this, | 83 |
| abstract_inverted_index.time, | 136 |
| abstract_inverted_index.works | 24, 36 |
| abstract_inverted_index.TACO's | 177, 199 |
| abstract_inverted_index.across | 6, 62, 195 |
| abstract_inverted_index.better | 125 |
| abstract_inverted_index.beyond | 170 |
| abstract_inverted_index.global | 114 |
| abstract_inverted_index.hidden | 52 |
| abstract_inverted_index.models | 109 |
| abstract_inverted_index.nature | 94 |
| abstract_inverted_index.rather | 133 |
| abstract_inverted_index.rounds | 132 |
| abstract_inverted_index.stable | 202 |
| abstract_inverted_index.verify | 118 |
| abstract_inverted_index.achieve | 38 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.adopted | 64 |
| abstract_inverted_index.brought | 55 |
| abstract_inverted_index.clients | 8, 63 |
| abstract_inverted_index.confirm | 198 |
| abstract_inverted_index.degrade | 71 |
| abstract_inverted_index.deploys | 152 |
| abstract_inverted_index.enhance | 147 |
| abstract_inverted_index.imposed | 143 |
| abstract_inverted_index.leading | 120 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.minimum | 163 |
| abstract_inverted_index.non-IID | 93 |
| abstract_inverted_index.present | 180 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.provide | 46 |
| abstract_inverted_index.reveals | 187 |
| abstract_inverted_index.towards | 110 |
| abstract_inverted_index.uniform | 58 |
| abstract_inverted_index.various | 27, 196 |
| abstract_inverted_index.accuracy | 127 |
| abstract_inverted_index.accurate | 113 |
| abstract_inverted_index.analysis | 185 |
| abstract_inverted_index.approach | 160 |
| abstract_inverted_index.clients' | 96 |
| abstract_inverted_index.clients. | 145 |
| abstract_inverted_index.datasets | 197 |
| abstract_inverted_index.existing | 66 |
| abstract_inverted_index.failures | 77 |
| abstract_inverted_index.gradient | 102 |
| abstract_inverted_index.learning | 16 |
| abstract_inverted_index.methods. | 67 |
| abstract_inverted_index.mitigate | 30 |
| abstract_inverted_index.optimum. | 115 |
| abstract_inverted_index.overhead | 142, 165 |
| abstract_inverted_index.proposed | 26 |
| abstract_inverted_index.requires | 162 |
| abstract_inverted_index.steering | 107 |
| abstract_inverted_index.superior | 200 |
| abstract_inverted_index.tailored | 158 |
| abstract_inverted_index.training | 18, 149 |
| abstract_inverted_index.validate | 176 |
| abstract_inverted_index.(Non-IID) | 4 |
| abstract_inverted_index.Extensive | 193 |
| abstract_inverted_index.Moreover, | 116 |
| abstract_inverted_index.addresses | 91 |
| abstract_inverted_index.algorithm | 89 |
| abstract_inverted_index.computing | 21 |
| abstract_inverted_index.federated | 15 |
| abstract_inverted_index.generally | 123 |
| abstract_inverted_index.practice. | 205 |
| abstract_inverted_index.resulting | 137 |
| abstract_inverted_index.algorithms | 122 |
| abstract_inverted_index.challenges | 13 |
| abstract_inverted_index.correction | 60, 103, 156 |
| abstract_inverted_index.phenomenon | 54 |
| abstract_inverted_index.wall-clock | 135 |
| abstract_inverted_index.aggregation | 159 |
| abstract_inverted_index.computation | 141, 164 |
| abstract_inverted_index.convergence | 184 |
| abstract_inverted_index.distributed | 3 |
| abstract_inverted_index.efficiency, | 150 |
| abstract_inverted_index.experiments | 194 |
| abstract_inverted_index.identically | 2 |
| abstract_inverted_index.information | 169 |
| abstract_inverted_index.lightweight | 154 |
| abstract_inverted_index.parameters. | 174 |
| abstract_inverted_index.performance | 73, 203 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.statistical | 32 |
| abstract_inverted_index.theoretical | 40 |
| abstract_inverted_index.aggregation, | 106 |
| abstract_inverted_index.coefficients | 61 |
| abstract_inverted_index.convergence. | 80 |
| abstract_inverted_index.implementing | 99 |
| abstract_inverted_index.performance, | 41 |
| abstract_inverted_index.synchronized | 172 |
| abstract_inverted_index.communication | 131 |
| abstract_inverted_index.environments. | 22 |
| abstract_inverted_index.fine-grained, | 100 |
| abstract_inverted_index.investigation | 49 |
| abstract_inverted_index.effectiveness, | 178 |
| abstract_inverted_index.heterogeneity. | 33 |
| abstract_inverted_index.Non-independent | 0 |
| abstract_inverted_index.client-specific | 101 |
| abstract_inverted_index.over-correction | 53, 69 |
| abstract_inverted_index.over-correction. | 192 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |