Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models Article Swipe
Huaixiu Zheng
,
Swaroop Mishra
,
Xinyun Chen
,
Heng-Tze Cheng
,
Ed H.
,
Quoc V. Le
,
Denny Zhou
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.06117
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.06117
We present Step-Back Prompting, a simple prompting technique that enables LLMs to do abstractions to derive high-level concepts and first principles from instances containing specific details. Using the concepts and principles to guide reasoning, LLMs significantly improve their abilities in following a correct reasoning path towards the solution. We conduct experiments of Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe substantial performance gains on various challenging reasoning-intensive tasks including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7% and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.06117
- https://arxiv.org/pdf/2310.06117
- OA Status
- green
- Cited By
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387560733
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387560733Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.06117Digital Object Identifier
- Title
-
Take a Step Back: Evoking Reasoning via Abstraction in Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-09Full publication date if available
- Authors
-
Huaixiu Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H., Quoc V. Le, Denny ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.06117Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.06117Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.06117Direct OA link when available
- Concepts
-
Abstraction, Computer science, Programming language, Natural language processing, Cognitive science, Artificial intelligence, Epistemology, Psychology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 7, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387560733 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.06117 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.06117 |
| ids.openalex | https://openalex.org/W4387560733 |
| fwci | |
| type | preprint |
| title | Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9853000044822693 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9828000068664551 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C124304363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8015742897987366 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q673661 |
| concepts[0].display_name | Abstraction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5929064750671387 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C199360897 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48612403869628906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[2].display_name | Programming language |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.39655715227127075 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3935718834400177 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3926449716091156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C111472728 |
| concepts[6].level | 1 |
| concepts[6].score | 0.28263258934020996 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[6].display_name | Epistemology |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19387337565422058 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.14444252848625183 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/abstraction |
| keywords[0].score | 0.8015742897987366 |
| keywords[0].display_name | Abstraction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5929064750671387 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/programming-language |
| keywords[2].score | 0.48612403869628906 |
| keywords[2].display_name | Programming language |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.39655715227127075 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.3935718834400177 |
| keywords[4].display_name | Cognitive science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3926449716091156 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/epistemology |
| keywords[6].score | 0.28263258934020996 |
| keywords[6].display_name | Epistemology |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.19387337565422058 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.14444252848625183 |
| keywords[8].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.06117 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.06117 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.06117 |
| locations[1].id | doi:10.48550/arxiv.2310.06117 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.06117 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003807260 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Huaixiu Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng, Huaixiu Steven |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063722751 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[1].author.display_name | Swaroop Mishra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mishra, Swaroop |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101977008 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-9700-8951 |
| authorships[2].author.display_name | Xinyun Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Xinyun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054880622 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-3845-8796 |
| authorships[3].author.display_name | Heng-Tze Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Heng-Tze |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028125399 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3230-5338 |
| authorships[4].author.display_name | Ed H. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chi, Ed H. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5088551093 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1087-2844 |
| authorships[5].author.display_name | Quoc V. Le |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Le, Quoc V |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5061512999 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Denny Zhou |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhou, Denny |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.06117 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-12T00:00:00 |
| display_name | Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9853000044822693 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2045155990, https://openalex.org/W4313163053, https://openalex.org/W3045811229, https://openalex.org/W4300973204, https://openalex.org/W1483408780, https://openalex.org/W4284884309, https://openalex.org/W2908749798, https://openalex.org/W2105980483, https://openalex.org/W4243842598, https://openalex.org/W3204019825 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.06117 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.06117 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.06117 |
| primary_location.id | pmh:oai:arXiv.org:2310.06117 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.06117 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.06117 |
| publication_date | 2023-10-09 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 41 |
| abstract_inverted_index.7% | 90 |
| abstract_inverted_index.We | 0, 48 |
| abstract_inverted_index.by | 89, 95, 99 |
| abstract_inverted_index.do | 12 |
| abstract_inverted_index.in | 39 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.on | 65, 84 |
| abstract_inverted_index.to | 11, 14, 31 |
| abstract_inverted_index.11% | 92 |
| abstract_inverted_index.7%. | 100 |
| abstract_inverted_index.For | 77 |
| abstract_inverted_index.QA, | 73 |
| abstract_inverted_index.and | 18, 29, 57, 60, 74, 87, 91, 97 |
| abstract_inverted_index.the | 27, 46 |
| abstract_inverted_index.27%, | 96 |
| abstract_inverted_index.LLMs | 10, 34 |
| abstract_inverted_index.MMLU | 85 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.path | 44 |
| abstract_inverted_index.that | 8 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.GPT-4 | 56 |
| abstract_inverted_index.STEM, | 71 |
| abstract_inverted_index.Using | 26 |
| abstract_inverted_index.first | 19 |
| abstract_inverted_index.gains | 64 |
| abstract_inverted_index.guide | 32 |
| abstract_inverted_index.tasks | 69 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.TimeQA | 94 |
| abstract_inverted_index.derive | 15 |
| abstract_inverted_index.simple | 5 |
| abstract_inverted_index.MuSiQue | 98 |
| abstract_inverted_index.PaLM-2L | 82 |
| abstract_inverted_index.conduct | 49 |
| abstract_inverted_index.correct | 42 |
| abstract_inverted_index.enables | 9 |
| abstract_inverted_index.improve | 36 |
| abstract_inverted_index.models, | 59 |
| abstract_inverted_index.observe | 61 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.towards | 45 |
| abstract_inverted_index.various | 66 |
| abstract_inverted_index.(Physics | 86 |
| abstract_inverted_index.PaLM-2L, | 55 |
| abstract_inverted_index.concepts | 17, 28 |
| abstract_inverted_index.details. | 25 |
| abstract_inverted_index.improves | 81 |
| abstract_inverted_index.specific | 24 |
| abstract_inverted_index.Knowledge | 72 |
| abstract_inverted_index.Multi-Hop | 75 |
| abstract_inverted_index.Prompting | 53, 80 |
| abstract_inverted_index.Step-Back | 2, 52, 79 |
| abstract_inverted_index.abilities | 38 |
| abstract_inverted_index.following | 40 |
| abstract_inverted_index.including | 70 |
| abstract_inverted_index.instance, | 78 |
| abstract_inverted_index.instances | 22 |
| abstract_inverted_index.prompting | 6 |
| abstract_inverted_index.reasoning | 43 |
| abstract_inverted_index.solution. | 47 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.Chemistry) | 88 |
| abstract_inverted_index.Llama2-70B | 58 |
| abstract_inverted_index.Prompting, | 3 |
| abstract_inverted_index.Reasoning. | 76 |
| abstract_inverted_index.containing | 23 |
| abstract_inverted_index.high-level | 16 |
| abstract_inverted_index.principles | 20, 30 |
| abstract_inverted_index.reasoning, | 33 |
| abstract_inverted_index.challenging | 67 |
| abstract_inverted_index.experiments | 50 |
| abstract_inverted_index.performance | 63, 83 |
| abstract_inverted_index.substantial | 62 |
| abstract_inverted_index.abstractions | 13 |
| abstract_inverted_index.respectively, | 93 |
| abstract_inverted_index.significantly | 35 |
| abstract_inverted_index.reasoning-intensive | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |