tame: An R package for identifying clusters of medication use based on dose, timing and type of medication Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.06.24.24309427
Simplified exposure classifications, such as ever exposed versus never exposed, are commonly used in pharmacoepidemiology. However, this simplification may obscure complex use patterns relevant to researchers. We introduce tame, an R package that offers a novel method for classifying medication use patterns, capturing complexities such as timing, dose, and concurrent medication use in real-world data. The core innovation of tame is its bespoke distance measure, which identifies complex clusters in medication use and is highly adaptable, allowing customization based on the Anatomical Therapeutic Chemical (ATC) Classification System, medication timing, and dose. By prioritizing a robust distance measure, tame ensures accurate and meaningful clustering, enabling researchers to uncover intricate patterns within their data. The package also includes tools for visualizing and applying these clusters to new datasets. In a national Danish cohort study, tame identified nuanced antidepressant use patterns before and during pregnancy, demonstrating its capability to detect complex trends. tame is available on the Comprehensive R Archive Network at [ https://CRAN.R-project.org/package=tame ] under an MIT license, with a development version on GitHub at [ https://github.com/Laksafoss/tame ]. tame enhances medication use classification by detecting complex interactions and offering insights into real-world medication usage, thus improving stratification in epidemiological studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.06.24.24309427
- https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400018649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400018649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.06.24.24309427Digital Object Identifier
- Title
-
tame: An R package for identifying clusters of medication use based on dose, timing and type of medicationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-25Full publication date if available
- Authors
-
Anna Laksafoss, Jan Wohlfahrt, Anders HviidList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.06.24.24309427Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdfDirect OA link when available
- Concepts
-
R package, Computer science, Medicine, Psychology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400018649 |
|---|---|
| doi | https://doi.org/10.1101/2024.06.24.24309427 |
| ids.doi | https://doi.org/10.1101/2024.06.24.24309427 |
| ids.openalex | https://openalex.org/W4400018649 |
| fwci | 1.53290046 |
| type | preprint |
| title | tame: An R package for identifying clusters of medication use based on dose, timing and type of medication |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9799000024795532 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T13283 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Mental Health Research Topics |
| topics[2].id | https://openalex.org/T11901 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Methods and Mixture Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2984074130 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5188737511634827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q73539779 |
| concepts[0].display_name | R package |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4042547941207886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39159905910491943 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3500693738460541 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C199360897 |
| concepts[4].level | 1 |
| concepts[4].score | 0.17965081334114075 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[4].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/r-package |
| keywords[0].score | 0.5188737511634827 |
| keywords[0].display_name | R package |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4042547941207886 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.39159905910491943 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3500693738460541 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/programming-language |
| keywords[4].score | 0.17965081334114075 |
| keywords[4].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1101/2024.06.24.24309427 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.06.24.24309427 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087918956 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9898-2924 |
| authorships[0].author.display_name | Anna Laksafoss |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I101527212 |
| authorships[0].affiliations[0].raw_affiliation_string | Statens Serum Institut |
| authorships[0].institutions[0].id | https://openalex.org/I101527212 |
| authorships[0].institutions[0].ror | https://ror.org/0417ye583 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I101527212 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Statens Serum Institut |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anna Laksafoss |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Statens Serum Institut |
| authorships[1].author.id | https://openalex.org/A5008860248 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0019-2247 |
| authorships[1].author.display_name | Jan Wohlfahrt |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210148920 |
| authorships[1].affiliations[0].raw_affiliation_string | Danish Cancer Society: Kraeftens Bekaempelse |
| authorships[1].institutions[0].id | https://openalex.org/I4210148920 |
| authorships[1].institutions[0].ror | https://ror.org/03ytt7k16 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210148920 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | Danish Cancer Society |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jan Wohlfahrt |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Danish Cancer Society: Kraeftens Bekaempelse |
| authorships[2].author.id | https://openalex.org/A5022804650 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7509-9127 |
| authorships[2].author.display_name | Anders Hviid |
| authorships[2].countries | DK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I101527212 |
| authorships[2].affiliations[0].raw_affiliation_string | Statens Serum Institut |
| authorships[2].institutions[0].id | https://openalex.org/I101527212 |
| authorships[2].institutions[0].ror | https://ror.org/0417ye583 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I101527212 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | Statens Serum Institut |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Anders Hviid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Statens Serum Institut |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | tame: An R package for identifying clusters of medication use based on dose, timing and type of medication |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9799000024795532 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.06.24.24309427 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.06.24.24309427 |
| primary_location.id | doi:10.1101/2024.06.24.24309427 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/06/25/2024.06.24.24309427.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.06.24.24309427 |
| publication_date | 2024-06-25 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2303438795, https://openalex.org/W3169079695, https://openalex.org/W2994904397, https://openalex.org/W2160197181, https://openalex.org/W1480271113, https://openalex.org/W2622731166, https://openalex.org/W4399576335, https://openalex.org/W180581279, https://openalex.org/W4323535164, https://openalex.org/W2541013163, https://openalex.org/W3098804274 |
| referenced_works_count | 11 |
| abstract_inverted_index.R | 31, 156 |
| abstract_inverted_index.[ | 160, 174 |
| abstract_inverted_index.] | 162 |
| abstract_inverted_index.a | 35, 94, 128, 168 |
| abstract_inverted_index.By | 92 |
| abstract_inverted_index.In | 127 |
| abstract_inverted_index.We | 27 |
| abstract_inverted_index.]. | 176 |
| abstract_inverted_index.an | 30, 164 |
| abstract_inverted_index.as | 5, 46 |
| abstract_inverted_index.at | 159, 173 |
| abstract_inverted_index.by | 182 |
| abstract_inverted_index.in | 14, 53, 70, 196 |
| abstract_inverted_index.is | 61, 74, 151 |
| abstract_inverted_index.of | 59 |
| abstract_inverted_index.on | 80, 153, 171 |
| abstract_inverted_index.to | 25, 106, 124, 146 |
| abstract_inverted_index.MIT | 165 |
| abstract_inverted_index.The | 56, 113 |
| abstract_inverted_index.and | 49, 73, 90, 101, 120, 140, 186 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.for | 38, 118 |
| abstract_inverted_index.its | 62, 144 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.new | 125 |
| abstract_inverted_index.the | 81, 154 |
| abstract_inverted_index.use | 22, 41, 52, 72, 137, 180 |
| abstract_inverted_index.also | 115 |
| abstract_inverted_index.core | 57 |
| abstract_inverted_index.ever | 6 |
| abstract_inverted_index.into | 189 |
| abstract_inverted_index.such | 4, 45 |
| abstract_inverted_index.tame | 60, 98, 133, 150, 177 |
| abstract_inverted_index.that | 33 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.thus | 193 |
| abstract_inverted_index.used | 13 |
| abstract_inverted_index.with | 167 |
| abstract_inverted_index.(ATC) | 85 |
| abstract_inverted_index.based | 79 |
| abstract_inverted_index.data. | 55, 112 |
| abstract_inverted_index.dose, | 48 |
| abstract_inverted_index.dose. | 91 |
| abstract_inverted_index.never | 9 |
| abstract_inverted_index.novel | 36 |
| abstract_inverted_index.tame, | 29 |
| abstract_inverted_index.their | 111 |
| abstract_inverted_index.these | 122 |
| abstract_inverted_index.tools | 117 |
| abstract_inverted_index.under | 163 |
| abstract_inverted_index.which | 66 |
| abstract_inverted_index.Danish | 130 |
| abstract_inverted_index.GitHub | 172 |
| abstract_inverted_index.before | 139 |
| abstract_inverted_index.cohort | 131 |
| abstract_inverted_index.detect | 147 |
| abstract_inverted_index.during | 141 |
| abstract_inverted_index.highly | 75 |
| abstract_inverted_index.method | 37 |
| abstract_inverted_index.offers | 34 |
| abstract_inverted_index.robust | 95 |
| abstract_inverted_index.study, | 132 |
| abstract_inverted_index.usage, | 192 |
| abstract_inverted_index.versus | 8 |
| abstract_inverted_index.within | 110 |
| abstract_inverted_index.Archive | 157 |
| abstract_inverted_index.Network | 158 |
| abstract_inverted_index.System, | 87 |
| abstract_inverted_index.bespoke | 63 |
| abstract_inverted_index.complex | 21, 68, 148, 184 |
| abstract_inverted_index.ensures | 99 |
| abstract_inverted_index.exposed | 7 |
| abstract_inverted_index.nuanced | 135 |
| abstract_inverted_index.obscure | 20 |
| abstract_inverted_index.package | 32, 114 |
| abstract_inverted_index.timing, | 47, 89 |
| abstract_inverted_index.trends. | 149 |
| abstract_inverted_index.uncover | 107 |
| abstract_inverted_index.version | 170 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Chemical | 84 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accurate | 100 |
| abstract_inverted_index.allowing | 77 |
| abstract_inverted_index.applying | 121 |
| abstract_inverted_index.clusters | 69, 123 |
| abstract_inverted_index.commonly | 12 |
| abstract_inverted_index.distance | 64, 96 |
| abstract_inverted_index.enabling | 104 |
| abstract_inverted_index.enhances | 178 |
| abstract_inverted_index.exposed, | 10 |
| abstract_inverted_index.exposure | 2 |
| abstract_inverted_index.includes | 116 |
| abstract_inverted_index.insights | 188 |
| abstract_inverted_index.license, | 166 |
| abstract_inverted_index.measure, | 65, 97 |
| abstract_inverted_index.national | 129 |
| abstract_inverted_index.offering | 187 |
| abstract_inverted_index.patterns | 23, 109, 138 |
| abstract_inverted_index.relevant | 24 |
| abstract_inverted_index.studies. | 198 |
| abstract_inverted_index.available | 152 |
| abstract_inverted_index.capturing | 43 |
| abstract_inverted_index.datasets. | 126 |
| abstract_inverted_index.detecting | 183 |
| abstract_inverted_index.improving | 194 |
| abstract_inverted_index.intricate | 108 |
| abstract_inverted_index.introduce | 28 |
| abstract_inverted_index.patterns, | 42 |
| abstract_inverted_index.Anatomical | 82 |
| abstract_inverted_index.Simplified | 1 |
| abstract_inverted_index.adaptable, | 76 |
| abstract_inverted_index.capability | 145 |
| abstract_inverted_index.concurrent | 50 |
| abstract_inverted_index.identified | 134 |
| abstract_inverted_index.identifies | 67 |
| abstract_inverted_index.innovation | 58 |
| abstract_inverted_index.meaningful | 102 |
| abstract_inverted_index.medication | 40, 51, 71, 88, 179, 191 |
| abstract_inverted_index.pregnancy, | 142 |
| abstract_inverted_index.real-world | 54, 190 |
| abstract_inverted_index.Therapeutic | 83 |
| abstract_inverted_index.classifying | 39 |
| abstract_inverted_index.clustering, | 103 |
| abstract_inverted_index.development | 169 |
| abstract_inverted_index.researchers | 105 |
| abstract_inverted_index.visualizing | 119 |
| abstract_inverted_index.complexities | 44 |
| abstract_inverted_index.interactions | 185 |
| abstract_inverted_index.prioritizing | 93 |
| abstract_inverted_index.researchers. | 26 |
| abstract_inverted_index.Comprehensive | 155 |
| abstract_inverted_index.customization | 78 |
| abstract_inverted_index.demonstrating | 143 |
| abstract_inverted_index.Classification | 86 |
| abstract_inverted_index.antidepressant | 136 |
| abstract_inverted_index.classification | 181 |
| abstract_inverted_index.simplification | 18 |
| abstract_inverted_index.stratification | 195 |
| abstract_inverted_index.epidemiological | 197 |
| abstract_inverted_index.classifications, | 3 |
| abstract_inverted_index.pharmacoepidemiology. | 15 |
| abstract_inverted_index.https://github.com/Laksafoss/tame | 175 |
| abstract_inverted_index.https://CRAN.R-project.org/package=tame | 161 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5087918956 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I101527212 |
| citation_normalized_percentile.value | 0.74655231 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |