TAPVid-3D: A Benchmark for Tracking Any Point in 3D Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.05921
We introduce a new benchmark, TAPVid-3D, for evaluating the task of long-range Tracking Any Point in 3D (TAP-3D). While point tracking in two dimensions (TAP) has many benchmarks measuring performance on real-world videos, such as TAPVid-DAVIS, three-dimensional point tracking has none. To this end, leveraging existing footage, we build a new benchmark for 3D point tracking featuring 4,000+ real-world videos, composed of three different data sources spanning a variety of object types, motion patterns, and indoor and outdoor environments. To measure performance on the TAP-3D task, we formulate a collection of metrics that extend the Jaccard-based metric used in TAP to handle the complexities of ambiguous depth scales across models, occlusions, and multi-track spatio-temporal smoothness. We manually verify a large sample of trajectories to ensure correct video annotations, and assess the current state of the TAP-3D task by constructing competitive baselines using existing tracking models. We anticipate this benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video. Code for dataset download, generation, and model evaluation is available at https://tapvid3d.github.io
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.05921
- https://arxiv.org/pdf/2407.05921
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400485083
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400485083Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.05921Digital Object Identifier
- Title
-
TAPVid-3D: A Benchmark for Tracking Any Point in 3DWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-08Full publication date if available
- Authors
-
Skanda Koppula, Ignacio Rocco, Yi Yang, Joe Heyward, João Carreira, Andrew Zisserman, Gabriel Brostow, Carl DoerschList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.05921Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.05921Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.05921Direct OA link when available
- Concepts
-
Benchmark (surveying), Tracking (education), Point (geometry), Computer science, Artificial intelligence, Computer vision, Mathematics, Psychology, Geography, Geometry, Cartography, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400485083 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.05921 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.05921 |
| ids.openalex | https://openalex.org/W4400485083 |
| fwci | |
| type | preprint |
| title | TAPVid-3D: A Benchmark for Tracking Any Point in 3D |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.14000000059604645 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.12250000238418579 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7724066376686096 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C2775936607 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5728333592414856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[1].display_name | Tracking (education) |
| concepts[2].id | https://openalex.org/C28719098 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5711352825164795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[2].display_name | Point (geometry) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48244696855545044 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3258986175060272 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3242061734199524 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23080816864967346 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2023962140083313 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19183415174484253 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14170008897781372 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13595271110534668 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| concepts[11].id | https://openalex.org/C19417346 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[11].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.7724066376686096 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/tracking |
| keywords[1].score | 0.5728333592414856 |
| keywords[1].display_name | Tracking (education) |
| keywords[2].id | https://openalex.org/keywords/point |
| keywords[2].score | 0.5711352825164795 |
| keywords[2].display_name | Point (geometry) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48244696855545044 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3258986175060272 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3242061734199524 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.23080816864967346 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.2023962140083313 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.19183415174484253 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.14170008897781372 |
| keywords[9].display_name | Geometry |
| keywords[10].id | https://openalex.org/keywords/cartography |
| keywords[10].score | 0.13595271110534668 |
| keywords[10].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.05921 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.05921 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.05921 |
| locations[1].id | doi:10.48550/arxiv.2407.05921 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.05921 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035812263 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5397-1854 |
| authorships[0].author.display_name | Skanda Koppula |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Koppula, Skanda |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058904682 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9638-0508 |
| authorships[1].author.display_name | Ignacio Rocco |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rocco, Ignacio |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039924074 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8917-2196 |
| authorships[2].author.display_name | Yi Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Yi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5093487489 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Joe Heyward |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Heyward, Joe |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057909195 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | João Carreira |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carreira, João |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5057678172 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8945-8573 |
| authorships[5].author.display_name | Andrew Zisserman |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zisserman, Andrew |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5038405331 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8472-3828 |
| authorships[6].author.display_name | Gabriel Brostow |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Brostow, Gabriel |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5081047759 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Carl Doersch |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Doersch, Carl |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.05921 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TAPVid-3D: A Benchmark for Tracking Any Point in 3D |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.14000000059604645 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.05921 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.05921 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.05921 |
| primary_location.id | pmh:oai:arXiv.org:2407.05921 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.05921 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.05921 |
| publication_date | 2024-07-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 49, 67, 88, 118, 152 |
| abstract_inverted_index.3D | 16, 53, 161 |
| abstract_inverted_index.To | 41, 79 |
| abstract_inverted_index.We | 0, 115, 145 |
| abstract_inverted_index.as | 34, 151 |
| abstract_inverted_index.at | 179 |
| abstract_inverted_index.by | 137 |
| abstract_inverted_index.in | 15, 21, 98 |
| abstract_inverted_index.is | 177 |
| abstract_inverted_index.of | 10, 61, 69, 90, 104, 121, 133 |
| abstract_inverted_index.on | 30, 82 |
| abstract_inverted_index.to | 100, 123, 154, 158 |
| abstract_inverted_index.we | 47, 86 |
| abstract_inverted_index.Any | 13 |
| abstract_inverted_index.TAP | 99 |
| abstract_inverted_index.and | 74, 76, 111, 128, 163, 174 |
| abstract_inverted_index.for | 6, 52, 170 |
| abstract_inverted_index.has | 25, 39 |
| abstract_inverted_index.new | 3, 50 |
| abstract_inverted_index.our | 156 |
| abstract_inverted_index.the | 8, 83, 94, 102, 130, 134 |
| abstract_inverted_index.two | 22 |
| abstract_inverted_index.Code | 169 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.end, | 43 |
| abstract_inverted_index.from | 166 |
| abstract_inverted_index.many | 26 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.task | 9, 136 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.this | 42, 147 |
| abstract_inverted_index.used | 97 |
| abstract_inverted_index.will | 149 |
| abstract_inverted_index.(TAP) | 24 |
| abstract_inverted_index.Point | 14 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.build | 48 |
| abstract_inverted_index.depth | 106 |
| abstract_inverted_index.large | 119 |
| abstract_inverted_index.model | 175 |
| abstract_inverted_index.none. | 40 |
| abstract_inverted_index.point | 19, 37, 54 |
| abstract_inverted_index.serve | 150 |
| abstract_inverted_index.state | 132 |
| abstract_inverted_index.task, | 85 |
| abstract_inverted_index.three | 62 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.video | 126 |
| abstract_inverted_index.4,000+ | 57 |
| abstract_inverted_index.TAP-3D | 84, 135 |
| abstract_inverted_index.across | 108 |
| abstract_inverted_index.assess | 129 |
| abstract_inverted_index.ensure | 124 |
| abstract_inverted_index.extend | 93 |
| abstract_inverted_index.handle | 101 |
| abstract_inverted_index.indoor | 75 |
| abstract_inverted_index.metric | 96 |
| abstract_inverted_index.motion | 72, 162 |
| abstract_inverted_index.object | 70 |
| abstract_inverted_index.sample | 120 |
| abstract_inverted_index.scales | 107 |
| abstract_inverted_index.types, | 71 |
| abstract_inverted_index.verify | 117 |
| abstract_inverted_index.video. | 168 |
| abstract_inverted_index.ability | 157 |
| abstract_inverted_index.correct | 125 |
| abstract_inverted_index.current | 131 |
| abstract_inverted_index.dataset | 171 |
| abstract_inverted_index.improve | 155 |
| abstract_inverted_index.measure | 80 |
| abstract_inverted_index.metrics | 91 |
| abstract_inverted_index.models, | 109 |
| abstract_inverted_index.models. | 144 |
| abstract_inverted_index.outdoor | 77 |
| abstract_inverted_index.precise | 160 |
| abstract_inverted_index.sources | 65 |
| abstract_inverted_index.surface | 164 |
| abstract_inverted_index.variety | 68 |
| abstract_inverted_index.videos, | 32, 59 |
| abstract_inverted_index.Tracking | 12 |
| abstract_inverted_index.composed | 60 |
| abstract_inverted_index.existing | 45, 142 |
| abstract_inverted_index.footage, | 46 |
| abstract_inverted_index.manually | 116 |
| abstract_inverted_index.spanning | 66 |
| abstract_inverted_index.tracking | 20, 38, 55, 143 |
| abstract_inverted_index.(TAP-3D). | 17 |
| abstract_inverted_index.ambiguous | 105 |
| abstract_inverted_index.available | 178 |
| abstract_inverted_index.baselines | 140 |
| abstract_inverted_index.benchmark | 51, 148 |
| abstract_inverted_index.different | 63 |
| abstract_inverted_index.download, | 172 |
| abstract_inverted_index.featuring | 56 |
| abstract_inverted_index.formulate | 87 |
| abstract_inverted_index.guidepost | 153 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.measuring | 28 |
| abstract_inverted_index.monocular | 167 |
| abstract_inverted_index.patterns, | 73 |
| abstract_inverted_index.TAPVid-3D, | 5 |
| abstract_inverted_index.anticipate | 146 |
| abstract_inverted_index.benchmark, | 4 |
| abstract_inverted_index.benchmarks | 27 |
| abstract_inverted_index.collection | 89 |
| abstract_inverted_index.dimensions | 23 |
| abstract_inverted_index.evaluating | 7 |
| abstract_inverted_index.evaluation | 176 |
| abstract_inverted_index.leveraging | 44 |
| abstract_inverted_index.long-range | 11 |
| abstract_inverted_index.real-world | 31, 58 |
| abstract_inverted_index.understand | 159 |
| abstract_inverted_index.competitive | 139 |
| abstract_inverted_index.deformation | 165 |
| abstract_inverted_index.generation, | 173 |
| abstract_inverted_index.multi-track | 112 |
| abstract_inverted_index.occlusions, | 110 |
| abstract_inverted_index.performance | 29, 81 |
| abstract_inverted_index.smoothness. | 114 |
| abstract_inverted_index.annotations, | 127 |
| abstract_inverted_index.complexities | 103 |
| abstract_inverted_index.constructing | 138 |
| abstract_inverted_index.trajectories | 122 |
| abstract_inverted_index.Jaccard-based | 95 |
| abstract_inverted_index.TAPVid-DAVIS, | 35 |
| abstract_inverted_index.environments. | 78 |
| abstract_inverted_index.spatio-temporal | 113 |
| abstract_inverted_index.three-dimensional | 36 |
| abstract_inverted_index.https://tapvid3d.github.io | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |