Target acoustic field and transducer state optimization using Diff-PAT Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1063/5.0069182
Phased array transducers (PATs) are used in many applications, from airborne ultrasonic tactile displays to acoustic levitation. Acoustic holograms play a significant role in determining the performance of these applications. Many PATs and optimizers have been developed; however, only the following have been demonstrated in the literature: “phase” and “phase and amplitude” control of transducers and “phase” and “amplitude” only control at target points. Thus, most of the combinations of transducer state and target acoustic field conditions are yet to be explored. Here, we explore such combinations using Diff-PAT, one of the latest acoustic hologram optimizers. Diff-PAT is based on automatic differentiation and stochastic gradient descent. This optimizer achieves higher accuracy than conventional optimizers. We formulated multiple loss functions and wave propagators to enable each combination of the operation mode and quantitatively assessed the performance of each combination. The developed optimizers will offer new opportunities in the field and could allow further simplifications in PAT applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0069182
- https://aip.scitation.org/doi/pdf/10.1063/5.0069182
- OA Status
- gold
- Cited By
- 6
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200410890
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200410890Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0069182Digital Object Identifier
- Title
-
Target acoustic field and transducer state optimization using Diff-PATWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-01Full publication date if available
- Authors
-
Tatsuki Fushimi, Kenta Yamamoto, Yoichi OchiaiList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0069182Publisher landing page
- PDF URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0069182Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0069182Direct OA link when available
- Concepts
-
Transducer, Acoustics, Computer science, Amplitude, Holography, Ultrasonic sensor, Surface acoustic wave, Gradient descent, Phase (matter), Physics, Artificial neural network, Optics, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200410890 |
|---|---|
| doi | https://doi.org/10.1063/5.0069182 |
| ids.doi | https://doi.org/10.1063/5.0069182 |
| ids.openalex | https://openalex.org/W4200410890 |
| fwci | 0.27720689 |
| type | article |
| title | Target acoustic field and transducer state optimization using Diff-PAT |
| awards[0].id | https://openalex.org/G4839135828 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | 21K14103 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| biblio.issue | 12 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11255 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Microfluidic and Bio-sensing Technologies |
| topics[1].id | https://openalex.org/T10822 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Acoustic Wave Phenomena Research |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| funders[0].id | https://openalex.org/F4320334764 |
| funders[0].ror | https://ror.org/00hhkn466 |
| funders[0].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C56318395 |
| concepts[0].level | 2 |
| concepts[0].score | 0.778357207775116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q215928 |
| concepts[0].display_name | Transducer |
| concepts[1].id | https://openalex.org/C24890656 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6344116926193237 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[1].display_name | Acoustics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5821463465690613 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C180205008 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5480782985687256 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[3].display_name | Amplitude |
| concepts[4].id | https://openalex.org/C187590223 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5412226915359497 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q527628 |
| concepts[4].display_name | Holography |
| concepts[5].id | https://openalex.org/C81288441 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5223264098167419 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q20736125 |
| concepts[5].display_name | Ultrasonic sensor |
| concepts[6].id | https://openalex.org/C162954803 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48710155487060547 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q424074 |
| concepts[6].display_name | Surface acoustic wave |
| concepts[7].id | https://openalex.org/C153258448 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4841645359992981 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[7].display_name | Gradient descent |
| concepts[8].id | https://openalex.org/C44280652 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4719620943069458 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[8].display_name | Phase (matter) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2858816087245941 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2617969512939453 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1865079700946808 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1419646143913269 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/transducer |
| keywords[0].score | 0.778357207775116 |
| keywords[0].display_name | Transducer |
| keywords[1].id | https://openalex.org/keywords/acoustics |
| keywords[1].score | 0.6344116926193237 |
| keywords[1].display_name | Acoustics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5821463465690613 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/amplitude |
| keywords[3].score | 0.5480782985687256 |
| keywords[3].display_name | Amplitude |
| keywords[4].id | https://openalex.org/keywords/holography |
| keywords[4].score | 0.5412226915359497 |
| keywords[4].display_name | Holography |
| keywords[5].id | https://openalex.org/keywords/ultrasonic-sensor |
| keywords[5].score | 0.5223264098167419 |
| keywords[5].display_name | Ultrasonic sensor |
| keywords[6].id | https://openalex.org/keywords/surface-acoustic-wave |
| keywords[6].score | 0.48710155487060547 |
| keywords[6].display_name | Surface acoustic wave |
| keywords[7].id | https://openalex.org/keywords/gradient-descent |
| keywords[7].score | 0.4841645359992981 |
| keywords[7].display_name | Gradient descent |
| keywords[8].id | https://openalex.org/keywords/phase |
| keywords[8].score | 0.4719620943069458 |
| keywords[8].display_name | Phase (matter) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.2858816087245941 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.2617969512939453 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/optics |
| keywords[11].score | 0.1865079700946808 |
| keywords[11].display_name | Optics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1419646143913269 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1063/5.0069182 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S189917590 |
| locations[0].source.issn | 2158-3226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2158-3226 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIP Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0069182 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Advances |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0069182 |
| locations[1].id | pmh:oai:doaj.org/article:782e55ecea1f46179e1f29274651406b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIP Advances, Vol 11, Iss 12, Pp 125007-125007-5 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/782e55ecea1f46179e1f29274651406b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5047882495 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3944-0014 |
| authorships[0].author.display_name | Tatsuki Fushimi |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Library, Information and Media Science, University of Tsukuba 2 , Tsukuba 305-8550, Japan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I146399215 |
| authorships[0].affiliations[1].raw_affiliation_string | R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I146399215 |
| authorships[0].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | University of Tsukuba |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tatsuki Fushimi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Library, Information and Media Science, University of Tsukuba 2 , Tsukuba 305-8550, Japan, R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| authorships[1].author.id | https://openalex.org/A5013392776 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5535-061X |
| authorships[1].author.display_name | Kenta Yamamoto |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[1].affiliations[0].raw_affiliation_string | R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I146399215 |
| authorships[1].affiliations[1].raw_affiliation_string | Graduate School of Comprehensive Human Sciences, University of Tsukuba 3 , Tsukuba 305-8550, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I146399215 |
| authorships[1].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | University of Tsukuba |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kenta Yamamoto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graduate School of Comprehensive Human Sciences, University of Tsukuba 3 , Tsukuba 305-8550, Japan, R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| authorships[2].author.id | https://openalex.org/A5013807777 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4690-5724 |
| authorships[2].author.display_name | Yoichi Ochiai |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].raw_affiliation_string | Pixie Dust Technologies, Inc. 4 , Tokyo 101-0061, Japan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I146399215 |
| authorships[2].affiliations[1].raw_affiliation_string | R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I146399215 |
| authorships[2].affiliations[2].raw_affiliation_string | Faculty of Library, Information and Media Science, University of Tsukuba 2 , Tsukuba 305-8550, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I146399215 |
| authorships[2].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | University of Tsukuba |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yoichi Ochiai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Library, Information and Media Science, University of Tsukuba 2 , Tsukuba 305-8550, Japan, Pixie Dust Technologies, Inc. 4 , Tokyo 101-0061, Japan, R&D Center for Digital Nature, University of Tsukuba 1 , Tsukuba 305-8550, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aip.scitation.org/doi/pdf/10.1063/5.0069182 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Target acoustic field and transducer state optimization using Diff-PAT |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11255 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Microfluidic and Bio-sensing Technologies |
| related_works | https://openalex.org/W2707254711, https://openalex.org/W2012283803, https://openalex.org/W4312894971, https://openalex.org/W4384820447, https://openalex.org/W2520519067, https://openalex.org/W2072454424, https://openalex.org/W4381305349, https://openalex.org/W2366424944, https://openalex.org/W2089829884, https://openalex.org/W3034962873 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0069182 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S189917590 |
| best_oa_location.source.issn | 2158-3226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2158-3226 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIP Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0069182 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0069182 |
| primary_location.id | doi:10.1063/5.0069182 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S189917590 |
| primary_location.source.issn | 2158-3226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2158-3226 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIP Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0069182 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Advances |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0069182 |
| publication_date | 2021-12-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2744630022, https://openalex.org/W3151367827, https://openalex.org/W3144364082, https://openalex.org/W2103802786, https://openalex.org/W2904190915, https://openalex.org/W2218541975, https://openalex.org/W2964688377, https://openalex.org/W2053665797, https://openalex.org/W3048425039, https://openalex.org/W3089068258, https://openalex.org/W3158784822, https://openalex.org/W3110933024, https://openalex.org/W2009119086, https://openalex.org/W1989088178, https://openalex.org/W3045441261, https://openalex.org/W2964924317, https://openalex.org/W3114407073, https://openalex.org/W3084400944, https://openalex.org/W2522831503, https://openalex.org/W2742899848, https://openalex.org/W1522301498, https://openalex.org/W3105210345 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 20 |
| abstract_inverted_index.We | 114 |
| abstract_inverted_index.at | 61 |
| abstract_inverted_index.be | 80 |
| abstract_inverted_index.in | 6, 23, 44, 145, 153 |
| abstract_inverted_index.is | 97 |
| abstract_inverted_index.of | 27, 53, 66, 69, 90, 126, 135 |
| abstract_inverted_index.on | 99 |
| abstract_inverted_index.to | 14, 79, 122 |
| abstract_inverted_index.we | 83 |
| abstract_inverted_index.PAT | 154 |
| abstract_inverted_index.The | 138 |
| abstract_inverted_index.and | 32, 48, 50, 55, 57, 72, 102, 119, 130, 148 |
| abstract_inverted_index.are | 4, 77 |
| abstract_inverted_index.new | 143 |
| abstract_inverted_index.one | 89 |
| abstract_inverted_index.the | 25, 39, 45, 67, 91, 127, 133, 146 |
| abstract_inverted_index.yet | 78 |
| abstract_inverted_index.Many | 30 |
| abstract_inverted_index.PATs | 31 |
| abstract_inverted_index.This | 106 |
| abstract_inverted_index.been | 35, 42 |
| abstract_inverted_index.each | 124, 136 |
| abstract_inverted_index.from | 9 |
| abstract_inverted_index.have | 34, 41 |
| abstract_inverted_index.loss | 117 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.mode | 129 |
| abstract_inverted_index.most | 65 |
| abstract_inverted_index.only | 38, 59 |
| abstract_inverted_index.play | 19 |
| abstract_inverted_index.role | 22 |
| abstract_inverted_index.such | 85 |
| abstract_inverted_index.than | 111 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.wave | 120 |
| abstract_inverted_index.will | 141 |
| abstract_inverted_index.Here, | 82 |
| abstract_inverted_index.Thus, | 64 |
| abstract_inverted_index.allow | 150 |
| abstract_inverted_index.array | 1 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.could | 149 |
| abstract_inverted_index.field | 75, 147 |
| abstract_inverted_index.offer | 142 |
| abstract_inverted_index.state | 71 |
| abstract_inverted_index.these | 28 |
| abstract_inverted_index.using | 87 |
| abstract_inverted_index.(PATs) | 3 |
| abstract_inverted_index.Phased | 0 |
| abstract_inverted_index.enable | 123 |
| abstract_inverted_index.higher | 109 |
| abstract_inverted_index.latest | 92 |
| abstract_inverted_index.target | 62, 73 |
| abstract_inverted_index.control | 52, 60 |
| abstract_inverted_index.explore | 84 |
| abstract_inverted_index.further | 151 |
| abstract_inverted_index.points. | 63 |
| abstract_inverted_index.tactile | 12 |
| abstract_inverted_index.Acoustic | 17 |
| abstract_inverted_index.Diff-PAT | 96 |
| abstract_inverted_index.accuracy | 110 |
| abstract_inverted_index.achieves | 108 |
| abstract_inverted_index.acoustic | 15, 74, 93 |
| abstract_inverted_index.airborne | 10 |
| abstract_inverted_index.assessed | 132 |
| abstract_inverted_index.descent. | 105 |
| abstract_inverted_index.displays | 13 |
| abstract_inverted_index.gradient | 104 |
| abstract_inverted_index.hologram | 94 |
| abstract_inverted_index.however, | 37 |
| abstract_inverted_index.multiple | 116 |
| abstract_inverted_index.“phase | 49 |
| abstract_inverted_index.Diff-PAT, | 88 |
| abstract_inverted_index.automatic | 100 |
| abstract_inverted_index.developed | 139 |
| abstract_inverted_index.explored. | 81 |
| abstract_inverted_index.following | 40 |
| abstract_inverted_index.functions | 118 |
| abstract_inverted_index.holograms | 18 |
| abstract_inverted_index.operation | 128 |
| abstract_inverted_index.optimizer | 107 |
| abstract_inverted_index.conditions | 76 |
| abstract_inverted_index.developed; | 36 |
| abstract_inverted_index.formulated | 115 |
| abstract_inverted_index.optimizers | 33, 140 |
| abstract_inverted_index.stochastic | 103 |
| abstract_inverted_index.transducer | 70 |
| abstract_inverted_index.ultrasonic | 11 |
| abstract_inverted_index.combination | 125 |
| abstract_inverted_index.determining | 24 |
| abstract_inverted_index.levitation. | 16 |
| abstract_inverted_index.literature: | 46 |
| abstract_inverted_index.optimizers. | 95, 113 |
| abstract_inverted_index.performance | 26, 134 |
| abstract_inverted_index.propagators | 121 |
| abstract_inverted_index.significant | 21 |
| abstract_inverted_index.transducers | 2, 54 |
| abstract_inverted_index.“phase” | 47, 56 |
| abstract_inverted_index.amplitude” | 51 |
| abstract_inverted_index.combination. | 137 |
| abstract_inverted_index.combinations | 68, 86 |
| abstract_inverted_index.conventional | 112 |
| abstract_inverted_index.demonstrated | 43 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.applications. | 29, 155 |
| abstract_inverted_index.opportunities | 144 |
| abstract_inverted_index.quantitatively | 131 |
| abstract_inverted_index.differentiation | 101 |
| abstract_inverted_index.simplifications | 152 |
| abstract_inverted_index.“amplitude” | 58 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5047882495 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I146399215 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.51983748 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |