Target Identification via Multi-View Multi-Task Joint Sparse Representation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/app122110955
Recently, the monitoring efficiency and accuracy of visible and infrared video have been relatively low. In this paper, we propose an automatic target identification method using surveillance video, which provides an effective solution for the surveillance video data. Specifically, a target identification method via multi-view and multi-task sparse learning is proposed, where multi-view includes various types of visual features such as textures, edges, and invariant features. Each view of a candidate is regarded as a template, and the potential relationship between different tasks and different views is considered. These multiple views are integrated into the multi-task spare learning framework. The proposed MVMT method can be applied to solve the ship’s identification. Extensive experiments are conducted on public datasets, and custom sequence frames (i.e., six sequence frames from ship videos). The experimental results show that the proposed method is superior to other classical methods, qualitatively and quantitatively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app122110955
- https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337
- OA Status
- gold
- Cited By
- 1
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307948997
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307948997Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app122110955Digital Object Identifier
- Title
-
Target Identification via Multi-View Multi-Task Joint Sparse RepresentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-28Full publication date if available
- Authors
-
Jiawei Chen, Zhenshi Zhang, Xupeng WenList of authors in order
- Landing page
-
https://doi.org/10.3390/app122110955Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Spare part, Identification (biology), Task (project management), Computer vision, Pattern recognition (psychology), Sparse approximation, Engineering, Systems engineering, Botany, Biology, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307948997 |
|---|---|
| doi | https://doi.org/10.3390/app122110955 |
| ids.doi | https://doi.org/10.3390/app122110955 |
| ids.openalex | https://openalex.org/W4307948997 |
| fwci | 0.1237918 |
| type | article |
| title | Target Identification via Multi-View Multi-Task Joint Sparse Representation |
| biblio.issue | 21 |
| biblio.volume | 12 |
| biblio.last_page | 10955 |
| biblio.first_page | 10955 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T14257 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Measurement and Detection Methods |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7882027626037598 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6988047957420349 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C194648553 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5910413265228271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1364774 |
| concepts[2].display_name | Spare part |
| concepts[3].id | https://openalex.org/C116834253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5423756837844849 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[3].display_name | Identification (biology) |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.534782886505127 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5114651918411255 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47958293557167053 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C124066611 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47917214035987854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[7].display_name | Sparse approximation |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0774606466293335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C201995342 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[9].display_name | Systems engineering |
| concepts[10].id | https://openalex.org/C59822182 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[10].display_name | Botany |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7882027626037598 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6988047957420349 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/spare-part |
| keywords[2].score | 0.5910413265228271 |
| keywords[2].display_name | Spare part |
| keywords[3].id | https://openalex.org/keywords/identification |
| keywords[3].score | 0.5423756837844849 |
| keywords[3].display_name | Identification (biology) |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.534782886505127 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5114651918411255 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.47958293557167053 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/sparse-approximation |
| keywords[7].score | 0.47917214035987854 |
| keywords[7].display_name | Sparse approximation |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.0774606466293335 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/app122110955 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app122110955 |
| locations[1].id | pmh:oai:doaj.org/article:8fafde52ee2b4ac39611b15e614289eb |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 12, Iss 21, p 10955 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/8fafde52ee2b4ac39611b15e614289eb |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/12/21/10955/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app122110955 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100362822 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8195-1582 |
| authorships[0].author.display_name | Jiawei Chen |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA |
| authorships[0].institutions[0].id | https://openalex.org/I130701444 |
| authorships[0].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Georgia Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiawei Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA |
| authorships[1].author.id | https://openalex.org/A5009377598 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhenshi Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[1].affiliations[0].raw_affiliation_string | Undergraduate School, National University of Defense Technology, Changsha 410073, China |
| authorships[1].institutions[0].id | https://openalex.org/I170215575 |
| authorships[1].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National University of Defense Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhenshi Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Undergraduate School, National University of Defense Technology, Changsha 410073, China |
| authorships[2].author.id | https://openalex.org/A5062636672 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4498-3745 |
| authorships[2].author.display_name | Xupeng Wen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Traffic and Transportation Engineering, Central South University, Changsha 410073, China |
| authorships[2].institutions[0].id | https://openalex.org/I139660479 |
| authorships[2].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central South University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xupeng Wen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Traffic and Transportation Engineering, Central South University, Changsha 410073, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Target Identification via Multi-View Multi-Task Joint Sparse Representation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2376859990, https://openalex.org/W2912704652, https://openalex.org/W2381161177, https://openalex.org/W2319226115, https://openalex.org/W830772239, https://openalex.org/W2970750595, https://openalex.org/W2366601680, https://openalex.org/W2392193501, https://openalex.org/W2738649048, https://openalex.org/W1964749215 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app122110955 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app122110955 |
| primary_location.id | doi:10.3390/app122110955 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/12/21/10955/pdf?version=1667904337 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app122110955 |
| publication_date | 2022-10-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2575125657, https://openalex.org/W2594736882, https://openalex.org/W6840448520, https://openalex.org/W4300551940, https://openalex.org/W3043257208, https://openalex.org/W3206045983, https://openalex.org/W4294310859, https://openalex.org/W2611382369, https://openalex.org/W2098854771, https://openalex.org/W2805622579, https://openalex.org/W2896171544, https://openalex.org/W2963915818, https://openalex.org/W3120253624, https://openalex.org/W2784746431, https://openalex.org/W3094523336, https://openalex.org/W2805375139, https://openalex.org/W2982571117, https://openalex.org/W4225263202, https://openalex.org/W2558899534, https://openalex.org/W3006814414, https://openalex.org/W3126133447, https://openalex.org/W3001623242, https://openalex.org/W3170147864, https://openalex.org/W3108618494, https://openalex.org/W2472115300, https://openalex.org/W2519079179, https://openalex.org/W3205951039, https://openalex.org/W2962843811, https://openalex.org/W2798842862, https://openalex.org/W6810437065, https://openalex.org/W2955983623, https://openalex.org/W2963854930, https://openalex.org/W2954137266, https://openalex.org/W3125478936, https://openalex.org/W4224134028, https://openalex.org/W2786144199, https://openalex.org/W2907648650, https://openalex.org/W3005408544, https://openalex.org/W6701955516, https://openalex.org/W2990207990, https://openalex.org/W6774780342, https://openalex.org/W2895160458, https://openalex.org/W2799112149, https://openalex.org/W2159498975, https://openalex.org/W2890600890, https://openalex.org/W2094919853, https://openalex.org/W2098711149, https://openalex.org/W2330812670, https://openalex.org/W3012212207, https://openalex.org/W4286384837 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 39, 69, 74 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.an | 20, 30 |
| abstract_inverted_index.as | 60, 73 |
| abstract_inverted_index.be | 104 |
| abstract_inverted_index.is | 49, 71, 86, 137 |
| abstract_inverted_index.of | 6, 56, 68 |
| abstract_inverted_index.on | 115 |
| abstract_inverted_index.to | 106, 139 |
| abstract_inverted_index.we | 18 |
| abstract_inverted_index.The | 99, 129 |
| abstract_inverted_index.and | 4, 8, 45, 63, 76, 83, 118, 144 |
| abstract_inverted_index.are | 91, 113 |
| abstract_inverted_index.can | 103 |
| abstract_inverted_index.for | 33 |
| abstract_inverted_index.six | 123 |
| abstract_inverted_index.the | 1, 34, 77, 94, 108, 134 |
| abstract_inverted_index.via | 43 |
| abstract_inverted_index.Each | 66 |
| abstract_inverted_index.MVMT | 101 |
| abstract_inverted_index.been | 12 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.into | 93 |
| abstract_inverted_index.low. | 14 |
| abstract_inverted_index.ship | 127 |
| abstract_inverted_index.show | 132 |
| abstract_inverted_index.such | 59 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.view | 67 |
| abstract_inverted_index.These | 88 |
| abstract_inverted_index.data. | 37 |
| abstract_inverted_index.other | 140 |
| abstract_inverted_index.solve | 107 |
| abstract_inverted_index.spare | 96 |
| abstract_inverted_index.tasks | 82 |
| abstract_inverted_index.types | 55 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.video | 10, 36 |
| abstract_inverted_index.views | 85, 90 |
| abstract_inverted_index.where | 51 |
| abstract_inverted_index.which | 28 |
| abstract_inverted_index.(i.e., | 122 |
| abstract_inverted_index.custom | 119 |
| abstract_inverted_index.edges, | 62 |
| abstract_inverted_index.frames | 121, 125 |
| abstract_inverted_index.method | 24, 42, 102, 136 |
| abstract_inverted_index.paper, | 17 |
| abstract_inverted_index.public | 116 |
| abstract_inverted_index.sparse | 47 |
| abstract_inverted_index.target | 22, 40 |
| abstract_inverted_index.video, | 27 |
| abstract_inverted_index.visual | 57 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.between | 80 |
| abstract_inverted_index.propose | 19 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.various | 54 |
| abstract_inverted_index.visible | 7 |
| abstract_inverted_index.accuracy | 5 |
| abstract_inverted_index.features | 58 |
| abstract_inverted_index.includes | 53 |
| abstract_inverted_index.infrared | 9 |
| abstract_inverted_index.learning | 48, 97 |
| abstract_inverted_index.methods, | 142 |
| abstract_inverted_index.multiple | 89 |
| abstract_inverted_index.proposed | 100, 135 |
| abstract_inverted_index.provides | 29 |
| abstract_inverted_index.regarded | 72 |
| abstract_inverted_index.sequence | 120, 124 |
| abstract_inverted_index.ship’s | 109 |
| abstract_inverted_index.solution | 32 |
| abstract_inverted_index.superior | 138 |
| abstract_inverted_index.videos). | 128 |
| abstract_inverted_index.Extensive | 111 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.automatic | 21 |
| abstract_inverted_index.candidate | 70 |
| abstract_inverted_index.classical | 141 |
| abstract_inverted_index.conducted | 114 |
| abstract_inverted_index.datasets, | 117 |
| abstract_inverted_index.different | 81, 84 |
| abstract_inverted_index.effective | 31 |
| abstract_inverted_index.features. | 65 |
| abstract_inverted_index.invariant | 64 |
| abstract_inverted_index.potential | 78 |
| abstract_inverted_index.proposed, | 50 |
| abstract_inverted_index.template, | 75 |
| abstract_inverted_index.textures, | 61 |
| abstract_inverted_index.efficiency | 3 |
| abstract_inverted_index.framework. | 98 |
| abstract_inverted_index.integrated | 92 |
| abstract_inverted_index.monitoring | 2 |
| abstract_inverted_index.multi-task | 46, 95 |
| abstract_inverted_index.multi-view | 44, 52 |
| abstract_inverted_index.relatively | 13 |
| abstract_inverted_index.considered. | 87 |
| abstract_inverted_index.experiments | 112 |
| abstract_inverted_index.experimental | 130 |
| abstract_inverted_index.relationship | 79 |
| abstract_inverted_index.surveillance | 26, 35 |
| abstract_inverted_index.Specifically, | 38 |
| abstract_inverted_index.qualitatively | 143 |
| abstract_inverted_index.identification | 23, 41 |
| abstract_inverted_index.identification. | 110 |
| abstract_inverted_index.quantitatively. | 145 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5062636672 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I139660479 |
| citation_normalized_percentile.value | 0.41625521 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |