Target Tracking Method Based on Adaptive Structured Sparse Representation With Attention Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.2990410
Considering the problems of motion blur, partial occlusion and fast motion in target tracking, a target tracking method based on adaptive structured sparse representation with attention is proposed. Under the framework of particle filtering, the performance of high-quality templates is enhanced through an attention mechanism. Structure sparseness is used to build candidate target sets and sparse models between candidate samples and local patches of target templates. Combined with the sparse residual method, reconstruction error is reduced. After optimally solving the model, the particle with the highest similarity is selected as the prediction target. The most appropriate scale is selected according to the multiscale factor method. Experiments show that the proposed algorithm has a strong performance when dealing with motion blur, fast motion, partial occlusion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.2990410
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3023043662
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3023043662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.2990410Digital Object Identifier
- Title
-
Target Tracking Method Based on Adaptive Structured Sparse Representation With AttentionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Jie Wang, Shibin Xuan, Hao Zhang, Xuyang QinList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.2990410Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdfDirect OA link when available
- Concepts
-
Computer science, Sparse approximation, Motion blur, Artificial intelligence, Particle filter, Tracking (education), Computer vision, Representation (politics), Residual, Pattern recognition (psychology), Motion (physics), Similarity (geometry), Template, Image (mathematics), Algorithm, Kalman filter, Law, Programming language, Politics, Pedagogy, Political science, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3023043662 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.2990410 |
| ids.doi | https://doi.org/10.1109/access.2020.2990410 |
| ids.mag | 3023043662 |
| ids.openalex | https://openalex.org/W3023043662 |
| fwci | 0.20993464 |
| type | article |
| title | Target Tracking Method Based on Adaptive Structured Sparse Representation With Attention |
| awards[0].id | https://openalex.org/G1222602555 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61866003 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 79427 |
| biblio.first_page | 79419 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9939000010490417 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7355476021766663 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C124066611 |
| concepts[1].level | 2 |
| concepts[1].score | 0.735541820526123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[1].display_name | Sparse approximation |
| concepts[2].id | https://openalex.org/C2777708103 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7309955358505249 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q852589 |
| concepts[2].display_name | Motion blur |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6938347220420837 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C52421305 |
| concepts[4].level | 3 |
| concepts[4].score | 0.628595769405365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1151499 |
| concepts[4].display_name | Particle filter |
| concepts[5].id | https://openalex.org/C2775936607 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6076583862304688 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[5].display_name | Tracking (education) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.535876989364624 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5167290568351746 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C155512373 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5055463314056396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[8].display_name | Residual |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5006208419799805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C104114177 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47536081075668335 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[10].display_name | Motion (physics) |
| concepts[11].id | https://openalex.org/C103278499 |
| concepts[11].level | 3 |
| concepts[11].score | 0.46083077788352966 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[11].display_name | Similarity (geometry) |
| concepts[12].id | https://openalex.org/C82714645 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4591485857963562 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q438331 |
| concepts[12].display_name | Template |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2488429844379425 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2369101345539093 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C157286648 |
| concepts[15].level | 2 |
| concepts[15].score | 0.09601941704750061 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[15].display_name | Kalman filter |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| concepts[19].id | https://openalex.org/C19417346 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[19].display_name | Pedagogy |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| concepts[21].id | https://openalex.org/C15744967 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[21].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7355476021766663 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sparse-approximation |
| keywords[1].score | 0.735541820526123 |
| keywords[1].display_name | Sparse approximation |
| keywords[2].id | https://openalex.org/keywords/motion-blur |
| keywords[2].score | 0.7309955358505249 |
| keywords[2].display_name | Motion blur |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6938347220420837 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/particle-filter |
| keywords[4].score | 0.628595769405365 |
| keywords[4].display_name | Particle filter |
| keywords[5].id | https://openalex.org/keywords/tracking |
| keywords[5].score | 0.6076583862304688 |
| keywords[5].display_name | Tracking (education) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.535876989364624 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.5167290568351746 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/residual |
| keywords[8].score | 0.5055463314056396 |
| keywords[8].display_name | Residual |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.5006208419799805 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/motion |
| keywords[10].score | 0.47536081075668335 |
| keywords[10].display_name | Motion (physics) |
| keywords[11].id | https://openalex.org/keywords/similarity |
| keywords[11].score | 0.46083077788352966 |
| keywords[11].display_name | Similarity (geometry) |
| keywords[12].id | https://openalex.org/keywords/template |
| keywords[12].score | 0.4591485857963562 |
| keywords[12].display_name | Template |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.2488429844379425 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.2369101345539093 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/kalman-filter |
| keywords[15].score | 0.09601941704750061 |
| keywords[15].display_name | Kalman filter |
| language | en |
| locations[0].id | doi:10.1109/access.2020.2990410 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.2990410 |
| locations[1].id | pmh:oai:doaj.org/article:a1ffd79852644134bd5fcd8fc69c0f51 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 79419-79427 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/a1ffd79852644134bd5fcd8fc69c0f51 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100772693 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5896-5396 |
| authorships[0].author.display_name | Jie Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I167274908 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[0].institutions[0].id | https://openalex.org/I167274908 |
| authorships[0].institutions[0].ror | https://ror.org/0495efn48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I167274908 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangxi University for Nationalities |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jie Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[1].author.id | https://openalex.org/A5028472518 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0819-9216 |
| authorships[1].author.display_name | Shibin Xuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I167274908 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[1].institutions[0].id | https://openalex.org/I167274908 |
| authorships[1].institutions[0].ror | https://ror.org/0495efn48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I167274908 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangxi University for Nationalities |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shibin Xuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[2].author.id | https://openalex.org/A5100396844 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0404-6941 |
| authorships[2].author.display_name | Hao Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I167274908 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[2].institutions[0].id | https://openalex.org/I167274908 |
| authorships[2].institutions[0].ror | https://ror.org/0495efn48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I167274908 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangxi University for Nationalities |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[3].author.id | https://openalex.org/A5079221681 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1921-4423 |
| authorships[3].author.display_name | Xuyang Qin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I167274908 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| authorships[3].institutions[0].id | https://openalex.org/I167274908 |
| authorships[3].institutions[0].ror | https://ror.org/0495efn48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I167274908 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangxi University for Nationalities |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xuyang Qin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Target Tracking Method Based on Adaptive Structured Sparse Representation With Attention |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2121300814, https://openalex.org/W4231091074, https://openalex.org/W1886613375, https://openalex.org/W4236081792, https://openalex.org/W4250583430, https://openalex.org/W4234406076, https://openalex.org/W2010731026, https://openalex.org/W4311328601, https://openalex.org/W2360893094, https://openalex.org/W4390787808 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2020.2990410 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.2990410 |
| primary_location.id | doi:10.1109/access.2020.2990410 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078686.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.2990410 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2520477759, https://openalex.org/W2091563134, https://openalex.org/W2970449295, https://openalex.org/W2794109133, https://openalex.org/W2799058067, https://openalex.org/W2907380275, https://openalex.org/W2917798885, https://openalex.org/W2920691328, https://openalex.org/W2781785541, https://openalex.org/W2984839472, https://openalex.org/W2951747595, https://openalex.org/W2896356967, https://openalex.org/W2904713931, https://openalex.org/W6696499268, https://openalex.org/W1995903777, https://openalex.org/W1960880753, https://openalex.org/W1560733133, https://openalex.org/W6683636472, https://openalex.org/W2784375960, https://openalex.org/W6683886257, https://openalex.org/W2963328866, https://openalex.org/W1981219153, https://openalex.org/W3002815228, https://openalex.org/W2908414126, https://openalex.org/W2983787009, https://openalex.org/W2336911562, https://openalex.org/W2071551242, https://openalex.org/W1997121481, https://openalex.org/W2159128898, https://openalex.org/W2067191022, https://openalex.org/W2125907508, https://openalex.org/W2151693816, https://openalex.org/W2002406878, https://openalex.org/W2113577207, https://openalex.org/W2912617607, https://openalex.org/W1985560977, https://openalex.org/W1964846093, https://openalex.org/W2768166594, https://openalex.org/W2154889144, https://openalex.org/W2994367838, https://openalex.org/W2470394683, https://openalex.org/W2605524950, https://openalex.org/W2612893250, https://openalex.org/W2568078565, https://openalex.org/W2802896860, https://openalex.org/W2965887353, https://openalex.org/W3001222093, https://openalex.org/W2999814961, https://openalex.org/W2972433461, https://openalex.org/W2289255337, https://openalex.org/W2118097920, https://openalex.org/W2162383208, https://openalex.org/W2158917775 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 14, 112 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 89 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 26, 39, 47, 74, 87, 97 |
| abstract_inverted_index.of | 3, 31, 36, 63 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 49, 100 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.and | 8, 54, 60 |
| abstract_inverted_index.has | 111 |
| abstract_inverted_index.the | 1, 29, 34, 68, 79, 81, 84, 90, 101, 108 |
| abstract_inverted_index.fast | 9, 120 |
| abstract_inverted_index.most | 94 |
| abstract_inverted_index.sets | 53 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.used | 48 |
| abstract_inverted_index.when | 115 |
| abstract_inverted_index.with | 24, 67, 83, 117 |
| abstract_inverted_index.After | 76 |
| abstract_inverted_index.Under | 28 |
| abstract_inverted_index.based | 18 |
| abstract_inverted_index.blur, | 5, 119 |
| abstract_inverted_index.build | 50 |
| abstract_inverted_index.error | 73 |
| abstract_inverted_index.local | 61 |
| abstract_inverted_index.scale | 96 |
| abstract_inverted_index.factor | 103 |
| abstract_inverted_index.method | 17 |
| abstract_inverted_index.model, | 80 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.motion | 4, 10, 118 |
| abstract_inverted_index.sparse | 22, 55, 69 |
| abstract_inverted_index.strong | 113 |
| abstract_inverted_index.target | 12, 15, 52, 64 |
| abstract_inverted_index.between | 57 |
| abstract_inverted_index.dealing | 116 |
| abstract_inverted_index.highest | 85 |
| abstract_inverted_index.method, | 71 |
| abstract_inverted_index.method. | 104 |
| abstract_inverted_index.motion, | 121 |
| abstract_inverted_index.partial | 6, 122 |
| abstract_inverted_index.patches | 62 |
| abstract_inverted_index.samples | 59 |
| abstract_inverted_index.solving | 78 |
| abstract_inverted_index.target. | 92 |
| abstract_inverted_index.through | 41 |
| abstract_inverted_index.Combined | 66 |
| abstract_inverted_index.adaptive | 20 |
| abstract_inverted_index.enhanced | 40 |
| abstract_inverted_index.particle | 32, 82 |
| abstract_inverted_index.problems | 2 |
| abstract_inverted_index.proposed | 109 |
| abstract_inverted_index.reduced. | 75 |
| abstract_inverted_index.residual | 70 |
| abstract_inverted_index.selected | 88, 98 |
| abstract_inverted_index.tracking | 16 |
| abstract_inverted_index.Structure | 45 |
| abstract_inverted_index.according | 99 |
| abstract_inverted_index.algorithm | 110 |
| abstract_inverted_index.attention | 25, 43 |
| abstract_inverted_index.candidate | 51, 58 |
| abstract_inverted_index.framework | 30 |
| abstract_inverted_index.occlusion | 7 |
| abstract_inverted_index.optimally | 77 |
| abstract_inverted_index.proposed. | 27 |
| abstract_inverted_index.templates | 38 |
| abstract_inverted_index.tracking, | 13 |
| abstract_inverted_index.filtering, | 33 |
| abstract_inverted_index.mechanism. | 44 |
| abstract_inverted_index.multiscale | 102 |
| abstract_inverted_index.occlusion. | 123 |
| abstract_inverted_index.prediction | 91 |
| abstract_inverted_index.similarity | 86 |
| abstract_inverted_index.sparseness | 46 |
| abstract_inverted_index.structured | 21 |
| abstract_inverted_index.templates. | 65 |
| abstract_inverted_index.Considering | 0 |
| abstract_inverted_index.Experiments | 105 |
| abstract_inverted_index.appropriate | 95 |
| abstract_inverted_index.performance | 35, 114 |
| abstract_inverted_index.high-quality | 37 |
| abstract_inverted_index.reconstruction | 72 |
| abstract_inverted_index.representation | 23 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.49321499 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |