Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.17169
Prompt learning has become one of the most efficient paradigms for adapting large pre-trained vision-language models to downstream tasks. Current state-of-the-art methods, like CoOp and ProDA, tend to adopt soft prompts to learn an appropriate prompt for each specific task. Recent CoCoOp further boosts the base-to-new generalization performance via an image-conditional prompt. However, it directly fuses identical image semantics to prompts of different labels and significantly weakens the discrimination among different classes as shown in our experiments. Motivated by this observation, we first propose a class-aware text prompt (CTP) to enrich generated prompts with label-related image information. Unlike CoCoOp, CTP can effectively involve image semantics and avoid introducing extra ambiguities into different prompts. On the other hand, instead of reserving the complete image representations, we propose text-guided feature tuning (TFT) to make the image branch attend to class-related representation. A contrastive loss is employed to align such augmented text and image representations on downstream tasks. In this way, the image-to-text CTP and text-to-image TFT can be mutually promoted to enhance the adaptation of VLMs for downstream tasks. Extensive experiments demonstrate that our method outperforms the existing methods by a significant margin. Especially, compared to CoCoOp, we achieve an average improvement of 4.03% on new classes and 3.19% on harmonic-mean over eleven classification benchmarks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.17169
- https://arxiv.org/pdf/2303.17169
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361865825
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361865825Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.17169Digital Object Identifier
- Title
-
Task-Oriented Multi-Modal Mutual Leaning for Vision-Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-30Full publication date if available
- Authors
-
Sifan Long, Zhen Zhao, Junkun Yuan, Zichang Tan, Jiangjiang Liu, Luping Zhou, Shengsheng Wang, Jingdong WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.17169Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.17169Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.17169Direct OA link when available
- Concepts
-
Computer science, Task (project management), Artificial intelligence, Semantics (computer science), Image (mathematics), Class (philosophy), Representation (politics), Margin (machine learning), Feature (linguistics), Generalization, Modal, Natural language processing, Pattern recognition (psychology), Machine learning, Law, Polymer chemistry, Mathematics, Mathematical analysis, Linguistics, Programming language, Political science, Economics, Management, Chemistry, Philosophy, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361865825 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.17169 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.17169 |
| ids.openalex | https://openalex.org/W4361865825 |
| fwci | |
| type | preprint |
| title | Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9603999853134155 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7913802862167358 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6037497520446777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5737022161483765 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C184337299 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5627158284187317 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[3].display_name | Semantics (computer science) |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5517263412475586 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5464845299720764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C2776359362 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5450272560119629 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[6].display_name | Representation (politics) |
| concepts[7].id | https://openalex.org/C774472 |
| concepts[7].level | 2 |
| concepts[7].score | 0.535449743270874 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[7].display_name | Margin (machine learning) |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.526861310005188 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C177148314 |
| concepts[9].level | 2 |
| concepts[9].score | 0.489479660987854 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[9].display_name | Generalization |
| concepts[10].id | https://openalex.org/C71139939 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4612402617931366 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[10].display_name | Modal |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4581202268600464 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.39483359456062317 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.32918447256088257 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| concepts[15].id | https://openalex.org/C188027245 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[15].display_name | Polymer chemistry |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| concepts[21].id | https://openalex.org/C162324750 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[21].display_name | Economics |
| concepts[22].id | https://openalex.org/C187736073 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[22].display_name | Management |
| concepts[23].id | https://openalex.org/C185592680 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[23].display_name | Chemistry |
| concepts[24].id | https://openalex.org/C138885662 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[24].display_name | Philosophy |
| concepts[25].id | https://openalex.org/C94625758 |
| concepts[25].level | 2 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[25].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7913802862167358 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6037497520446777 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5737022161483765 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/semantics |
| keywords[3].score | 0.5627158284187317 |
| keywords[3].display_name | Semantics (computer science) |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.5517263412475586 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.5464845299720764 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/representation |
| keywords[6].score | 0.5450272560119629 |
| keywords[6].display_name | Representation (politics) |
| keywords[7].id | https://openalex.org/keywords/margin |
| keywords[7].score | 0.535449743270874 |
| keywords[7].display_name | Margin (machine learning) |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.526861310005188 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/generalization |
| keywords[9].score | 0.489479660987854 |
| keywords[9].display_name | Generalization |
| keywords[10].id | https://openalex.org/keywords/modal |
| keywords[10].score | 0.4612402617931366 |
| keywords[10].display_name | Modal |
| keywords[11].id | https://openalex.org/keywords/natural-language-processing |
| keywords[11].score | 0.4581202268600464 |
| keywords[11].display_name | Natural language processing |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.39483359456062317 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.32918447256088257 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.17169 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.17169 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.17169 |
| locations[1].id | doi:10.48550/arxiv.2303.17169 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.17169 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102874282 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7060-1133 |
| authorships[0].author.display_name | Sifan Long |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Long, Sifan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072694516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[1].author.display_name | Zhen Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Zhen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049344673 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0012-7397 |
| authorships[2].author.display_name | Junkun Yuan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuan, Junkun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040257967 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8501-4123 |
| authorships[3].author.display_name | Zichang Tan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tan, Zichang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5059524537 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1341-2763 |
| authorships[4].author.display_name | Jiangjiang Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Jiangjiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100643784 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8762-2424 |
| authorships[5].author.display_name | Luping Zhou |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhou, Luping |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5086280684 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8503-8061 |
| authorships[6].author.display_name | Shengsheng Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Shengsheng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5075880303 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4888-4445 |
| authorships[7].author.display_name | Jingdong Wang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wang, Jingdong |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.17169 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W3125011624, https://openalex.org/W1508631387, https://openalex.org/W2370917603, https://openalex.org/W2017776670, https://openalex.org/W2952760143, https://openalex.org/W3162204513, https://openalex.org/W2347897961, https://openalex.org/W2979236518, https://openalex.org/W2358318464, https://openalex.org/W2340870721 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.17169 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.17169 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.17169 |
| primary_location.id | pmh:oai:arXiv.org:2303.17169 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.17169 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.17169 |
| publication_date | 2023-03-30 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 139 |
| abstract_inverted_index.a | 84, 188 |
| abstract_inverted_index.In | 155 |
| abstract_inverted_index.On | 113 |
| abstract_inverted_index.an | 33, 49, 197 |
| abstract_inverted_index.as | 72 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.by | 78, 187 |
| abstract_inverted_index.in | 74 |
| abstract_inverted_index.is | 142 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.of | 5, 61, 118, 172, 200 |
| abstract_inverted_index.on | 152, 202, 207 |
| abstract_inverted_index.to | 16, 27, 31, 59, 89, 130, 136, 144, 168, 193 |
| abstract_inverted_index.we | 81, 124, 195 |
| abstract_inverted_index.CTP | 99, 160 |
| abstract_inverted_index.TFT | 163 |
| abstract_inverted_index.and | 24, 64, 105, 149, 161, 205 |
| abstract_inverted_index.can | 100, 164 |
| abstract_inverted_index.for | 10, 36, 174 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.new | 203 |
| abstract_inverted_index.one | 4 |
| abstract_inverted_index.our | 75, 181 |
| abstract_inverted_index.the | 6, 44, 67, 114, 120, 132, 158, 170, 184 |
| abstract_inverted_index.via | 48 |
| abstract_inverted_index.CoOp | 23 |
| abstract_inverted_index.VLMs | 173 |
| abstract_inverted_index.each | 37 |
| abstract_inverted_index.into | 110 |
| abstract_inverted_index.like | 22 |
| abstract_inverted_index.loss | 141 |
| abstract_inverted_index.make | 131 |
| abstract_inverted_index.most | 7 |
| abstract_inverted_index.over | 209 |
| abstract_inverted_index.soft | 29 |
| abstract_inverted_index.such | 146 |
| abstract_inverted_index.tend | 26 |
| abstract_inverted_index.text | 86, 148 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.this | 79, 156 |
| abstract_inverted_index.way, | 157 |
| abstract_inverted_index.with | 93 |
| abstract_inverted_index.(CTP) | 88 |
| abstract_inverted_index.(TFT) | 129 |
| abstract_inverted_index.3.19% | 206 |
| abstract_inverted_index.4.03% | 201 |
| abstract_inverted_index.adopt | 28 |
| abstract_inverted_index.align | 145 |
| abstract_inverted_index.among | 69 |
| abstract_inverted_index.avoid | 106 |
| abstract_inverted_index.extra | 108 |
| abstract_inverted_index.first | 82 |
| abstract_inverted_index.fuses | 55 |
| abstract_inverted_index.hand, | 116 |
| abstract_inverted_index.image | 57, 95, 103, 122, 133, 150 |
| abstract_inverted_index.large | 12 |
| abstract_inverted_index.learn | 32 |
| abstract_inverted_index.other | 115 |
| abstract_inverted_index.shown | 73 |
| abstract_inverted_index.task. | 39 |
| abstract_inverted_index.CoCoOp | 41 |
| abstract_inverted_index.ProDA, | 25 |
| abstract_inverted_index.Prompt | 0 |
| abstract_inverted_index.Recent | 40 |
| abstract_inverted_index.Unlike | 97 |
| abstract_inverted_index.attend | 135 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.boosts | 43 |
| abstract_inverted_index.branch | 134 |
| abstract_inverted_index.eleven | 210 |
| abstract_inverted_index.enrich | 90 |
| abstract_inverted_index.labels | 63 |
| abstract_inverted_index.method | 182 |
| abstract_inverted_index.models | 15 |
| abstract_inverted_index.prompt | 35, 87 |
| abstract_inverted_index.tasks. | 18, 154, 176 |
| abstract_inverted_index.tuning | 128 |
| abstract_inverted_index.CoCoOp, | 98, 194 |
| abstract_inverted_index.Current | 19 |
| abstract_inverted_index.achieve | 196 |
| abstract_inverted_index.average | 198 |
| abstract_inverted_index.classes | 71, 204 |
| abstract_inverted_index.enhance | 169 |
| abstract_inverted_index.feature | 127 |
| abstract_inverted_index.further | 42 |
| abstract_inverted_index.instead | 117 |
| abstract_inverted_index.involve | 102 |
| abstract_inverted_index.margin. | 190 |
| abstract_inverted_index.methods | 186 |
| abstract_inverted_index.prompt. | 51 |
| abstract_inverted_index.prompts | 30, 60, 92 |
| abstract_inverted_index.propose | 83, 125 |
| abstract_inverted_index.weakens | 66 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.adapting | 11 |
| abstract_inverted_index.compared | 192 |
| abstract_inverted_index.complete | 121 |
| abstract_inverted_index.directly | 54 |
| abstract_inverted_index.employed | 143 |
| abstract_inverted_index.existing | 185 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.methods, | 21 |
| abstract_inverted_index.mutually | 166 |
| abstract_inverted_index.promoted | 167 |
| abstract_inverted_index.prompts. | 112 |
| abstract_inverted_index.specific | 38 |
| abstract_inverted_index.Extensive | 177 |
| abstract_inverted_index.Motivated | 77 |
| abstract_inverted_index.augmented | 147 |
| abstract_inverted_index.different | 62, 70, 111 |
| abstract_inverted_index.efficient | 8 |
| abstract_inverted_index.generated | 91 |
| abstract_inverted_index.identical | 56 |
| abstract_inverted_index.paradigms | 9 |
| abstract_inverted_index.reserving | 119 |
| abstract_inverted_index.semantics | 58, 104 |
| abstract_inverted_index.adaptation | 171 |
| abstract_inverted_index.downstream | 17, 153, 175 |
| abstract_inverted_index.Especially, | 191 |
| abstract_inverted_index.ambiguities | 109 |
| abstract_inverted_index.appropriate | 34 |
| abstract_inverted_index.base-to-new | 45 |
| abstract_inverted_index.benchmarks. | 212 |
| abstract_inverted_index.class-aware | 85 |
| abstract_inverted_index.contrastive | 140 |
| abstract_inverted_index.demonstrate | 179 |
| abstract_inverted_index.effectively | 101 |
| abstract_inverted_index.experiments | 178 |
| abstract_inverted_index.improvement | 199 |
| abstract_inverted_index.introducing | 107 |
| abstract_inverted_index.outperforms | 183 |
| abstract_inverted_index.performance | 47 |
| abstract_inverted_index.pre-trained | 13 |
| abstract_inverted_index.significant | 189 |
| abstract_inverted_index.text-guided | 126 |
| abstract_inverted_index.experiments. | 76 |
| abstract_inverted_index.information. | 96 |
| abstract_inverted_index.observation, | 80 |
| abstract_inverted_index.class-related | 137 |
| abstract_inverted_index.harmonic-mean | 208 |
| abstract_inverted_index.image-to-text | 159 |
| abstract_inverted_index.label-related | 94 |
| abstract_inverted_index.significantly | 65 |
| abstract_inverted_index.text-to-image | 162 |
| abstract_inverted_index.classification | 211 |
| abstract_inverted_index.discrimination | 68 |
| abstract_inverted_index.generalization | 46 |
| abstract_inverted_index.representation. | 138 |
| abstract_inverted_index.representations | 151 |
| abstract_inverted_index.vision-language | 14 |
| abstract_inverted_index.representations, | 123 |
| abstract_inverted_index.state-of-the-art | 20 |
| abstract_inverted_index.image-conditional | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[1].score | 0.5 |
| sustainable_development_goals[1].display_name | Reduced inequalities |
| citation_normalized_percentile |