TE-PAI: exact time evolution by sampling random circuits Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/2058-9565/ae1160
Simulating time evolution under quantum Hamiltonians is one of the most natural applications of quantum computers. We introduce TE-PAI, which simulates time evolution exactly by sampling random quantum circuits for the purpose of estimating observable expectation values at the cost of an increased circuit repetition. The approach builds on the Probabilistic Angle Interpolation (PAI) technique and we prove that it simulates time evolution without discretisation or algorithmic error while achieving shallow circuit depths with optimal scaling that saturates the Lieb–Robinson bound. Another significant advantage of TE-PAI is that it only requires executing random circuits that consist of Pauli rotation gates of only two kinds of rotation angles ± Δ and π , along with measurements. While TE-PAI is highly beneficial for NISQ devices, we additionally develop an optimised early fault-tolerant implementation using catalyst circuits and repeat-until-success teleportation, concluding that the approach requires orders of magnitude fewer T-states than conventional techniques, such as Trotterization—we estimate T states are sufficient for the fault-tolerant simulation of a 100-qubit Heisenberg spin Hamiltonian. Furthermore, TE-PAI allows for a highly configurable trade-off between circuit depth and measurement overhead by adjusting the rotation angle Δ arbitrarily. We expect that the approach will be a major enabler in the late NISQ and early fault-tolerant periods as it can compensate circuit-depth and qubit-number limitations through an increased circuit repetition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2058-9565/ae1160
- OA Status
- hybrid
- Cited By
- 1
- References
- 56
- OpenAlex ID
- https://openalex.org/W4415005079
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415005079Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2058-9565/ae1160Digital Object Identifier
- Title
-
TE-PAI: exact time evolution by sampling random circuitsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-09Full publication date if available
- Authors
-
Chusei Kiumi, Bálint KoczorList of authors in order
- Landing page
-
https://doi.org/10.1088/2058-9565/ae1160Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/2058-9565/ae1160Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415005079 |
|---|---|
| doi | https://doi.org/10.1088/2058-9565/ae1160 |
| ids.doi | https://doi.org/10.1088/2058-9565/ae1160 |
| ids.openalex | https://openalex.org/W4415005079 |
| fwci | 4.81974515 |
| type | article |
| title | TE-PAI: exact time evolution by sampling random circuits |
| biblio.issue | 4 |
| biblio.volume | 10 |
| biblio.last_page | 045071 |
| biblio.first_page | 045071 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9682000279426575 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9110999703407288 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1088/2058-9565/ae1160 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177720 |
| locations[0].source.issn | 2058-9565 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2058-9565 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Quantum Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Quantum Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2058-9565/ae1160 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013630775 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3283-394X |
| authorships[0].author.display_name | Chusei Kiumi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chusei Kiumi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081798961 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4319-6870 |
| authorships[1].author.display_name | Bálint Koczor |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bálint Koczor |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/2058-9565/ae1160 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TE-PAI: exact time evolution by sampling random circuits |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9682000279426575 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/2058-9565/ae1160 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177720 |
| best_oa_location.source.issn | 2058-9565 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2058-9565 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Quantum Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Quantum Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2058-9565/ae1160 |
| primary_location.id | doi:10.1088/2058-9565/ae1160 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177720 |
| primary_location.source.issn | 2058-9565 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2058-9565 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Quantum Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Quantum Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2058-9565/ae1160 |
| publication_date | 2025-10-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2179731956, https://openalex.org/W2040792108, https://openalex.org/W2071874678, https://openalex.org/W2015711858, https://openalex.org/W2349487082, https://openalex.org/W2889126882, https://openalex.org/W2999629616, https://openalex.org/W3213044520, https://openalex.org/W2600825956, https://openalex.org/W1985671429, https://openalex.org/W2097174474, https://openalex.org/W2415656260, https://openalex.org/W2535738892, https://openalex.org/W4254506466, https://openalex.org/W2098948451, https://openalex.org/W4391679242, https://openalex.org/W3006823398, https://openalex.org/W3018348740, https://openalex.org/W4408505089, https://openalex.org/W4388422292, https://openalex.org/W3130923323, https://openalex.org/W4387527134, https://openalex.org/W3182584302, https://openalex.org/W2901677314, https://openalex.org/W2980123143, https://openalex.org/W3202536522, https://openalex.org/W4393220741, https://openalex.org/W2011290825, https://openalex.org/W2783316621, https://openalex.org/W4281914514, https://openalex.org/W2995050112, https://openalex.org/W4224096378, https://openalex.org/W4286001073, https://openalex.org/W2020615058, https://openalex.org/W4405923571, https://openalex.org/W3102161549, https://openalex.org/W2805612073, https://openalex.org/W2127488783, https://openalex.org/W2775106578, https://openalex.org/W4389672456, https://openalex.org/W3215183963, https://openalex.org/W4388483788, https://openalex.org/W1866699241, https://openalex.org/W1957473088, https://openalex.org/W1915167278, https://openalex.org/W4389891710, https://openalex.org/W2759506558, https://openalex.org/W2923595161, https://openalex.org/W2952708034, https://openalex.org/W4392490444, https://openalex.org/W3209367043, https://openalex.org/W2789114820, https://openalex.org/W2996191276, https://openalex.org/W2951814536, https://openalex.org/W2799222224, https://openalex.org/W2024400845 |
| referenced_works_count | 56 |
| abstract_inverted_index., | 112 |
| abstract_inverted_index.T | 169 |
| abstract_inverted_index.a | 178, 187, 211 |
| abstract_inverted_index.We | 17, 204 |
| abstract_inverted_index.an | 42, 127, 231 |
| abstract_inverted_index.as | 152, 222 |
| abstract_inverted_index.at | 38 |
| abstract_inverted_index.be | 210 |
| abstract_inverted_index.by | 25, 197 |
| abstract_inverted_index.in | 214 |
| abstract_inverted_index.is | 7, 87, 118 |
| abstract_inverted_index.it | 60, 89, 223 |
| abstract_inverted_index.of | 9, 14, 33, 41, 85, 97, 101, 105, 144, 177 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.or | 66 |
| abstract_inverted_index.we | 57, 124 |
| abstract_inverted_index.± | 108 |
| abstract_inverted_index.Δ | 109, 202 |
| abstract_inverted_index.π | 111 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.and | 56, 110, 135, 194, 218, 227 |
| abstract_inverted_index.are | 171 |
| abstract_inverted_index.can | 224 |
| abstract_inverted_index.for | 30, 121, 173, 186 |
| abstract_inverted_index.one | 8 |
| abstract_inverted_index.the | 10, 31, 39, 50, 79, 140, 174, 199, 207, 215 |
| abstract_inverted_index.two | 103 |
| abstract_inverted_index.NISQ | 122, 217 |
| abstract_inverted_index.cost | 40 |
| abstract_inverted_index.late | 216 |
| abstract_inverted_index.most | 11 |
| abstract_inverted_index.only | 90, 102 |
| abstract_inverted_index.spin | 181 |
| abstract_inverted_index.such | 151 |
| abstract_inverted_index.than | 148 |
| abstract_inverted_index.that | 59, 77, 88, 95, 139, 206 |
| abstract_inverted_index.time | 2, 22, 62 |
| abstract_inverted_index.will | 209 |
| abstract_inverted_index.with | 74, 114 |
| abstract_inverted_index.(PAI) | 54 |
| abstract_inverted_index.Angle | 52 |
| abstract_inverted_index.Pauli | 98 |
| abstract_inverted_index.While | 116 |
| abstract_inverted_index.along | 113 |
| abstract_inverted_index.angle | 201 |
| abstract_inverted_index.depth | 193 |
| abstract_inverted_index.early | 129, 219 |
| abstract_inverted_index.error | 68 |
| abstract_inverted_index.fewer | 146 |
| abstract_inverted_index.gates | 100 |
| abstract_inverted_index.kinds | 104 |
| abstract_inverted_index.major | 212 |
| abstract_inverted_index.prove | 58 |
| abstract_inverted_index.under | 4 |
| abstract_inverted_index.using | 132 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.while | 69 |
| abstract_inverted_index.TE-PAI | 86, 117, 184 |
| abstract_inverted_index.allows | 185 |
| abstract_inverted_index.angles | 107 |
| abstract_inverted_index.bound. | 81 |
| abstract_inverted_index.builds | 48 |
| abstract_inverted_index.depths | 73 |
| abstract_inverted_index.expect | 205 |
| abstract_inverted_index.highly | 119, 188 |
| abstract_inverted_index.orders | 143 |
| abstract_inverted_index.random | 27, 93 |
| abstract_inverted_index.states | 170 |
| abstract_inverted_index.values | 37 |
| abstract_inverted_index.Another | 82 |
| abstract_inverted_index.TE-PAI, | 19 |
| abstract_inverted_index.between | 191 |
| abstract_inverted_index.circuit | 44, 72, 192, 233 |
| abstract_inverted_index.consist | 96 |
| abstract_inverted_index.develop | 126 |
| abstract_inverted_index.enabler | 213 |
| abstract_inverted_index.exactly | 24 |
| abstract_inverted_index.natural | 12 |
| abstract_inverted_index.optimal | 75 |
| abstract_inverted_index.periods | 221 |
| abstract_inverted_index.purpose | 32 |
| abstract_inverted_index.quantum | 5, 15, 28 |
| abstract_inverted_index.scaling | 76 |
| abstract_inverted_index.shallow | 71 |
| abstract_inverted_index.through | 230 |
| abstract_inverted_index.without | 64 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.T-states | 147 |
| abstract_inverted_index.approach | 47, 141, 208 |
| abstract_inverted_index.catalyst | 133 |
| abstract_inverted_index.circuits | 29, 94, 134 |
| abstract_inverted_index.devices, | 123 |
| abstract_inverted_index.estimate | 154 |
| abstract_inverted_index.overhead | 196 |
| abstract_inverted_index.requires | 91, 142 |
| abstract_inverted_index.rotation | 99, 106, 200 |
| abstract_inverted_index.sampling | 26 |
| abstract_inverted_index.100-qubit | 179 |
| abstract_inverted_index.<mml:math | 155 |
| abstract_inverted_index.achieving | 70 |
| abstract_inverted_index.adjusting | 198 |
| abstract_inverted_index.advantage | 84 |
| abstract_inverted_index.evolution | 3, 23, 63 |
| abstract_inverted_index.executing | 92 |
| abstract_inverted_index.increased | 43, 232 |
| abstract_inverted_index.introduce | 18 |
| abstract_inverted_index.magnitude | 145 |
| abstract_inverted_index.optimised | 128 |
| abstract_inverted_index.saturates | 78 |
| abstract_inverted_index.simulates | 21, 61 |
| abstract_inverted_index.technique | 55 |
| abstract_inverted_index.trade-off | 190 |
| abstract_inverted_index.<mml:mrow> | 158, 163 |
| abstract_inverted_index.<mml:msup> | 161 |
| abstract_inverted_index.Heisenberg | 180 |
| abstract_inverted_index.Simulating | 1 |
| abstract_inverted_index.beneficial | 120 |
| abstract_inverted_index.compensate | 225 |
| abstract_inverted_index.computers. | 16 |
| abstract_inverted_index.concluding | 138 |
| abstract_inverted_index.estimating | 34 |
| abstract_inverted_index.observable | 35 |
| abstract_inverted_index.simulation | 176 |
| abstract_inverted_index.sufficient | 172 |
| abstract_inverted_index.</mml:math> | 168 |
| abstract_inverted_index.</mml:mrow> | 165, 167 |
| abstract_inverted_index.</mml:msup> | 166 |
| abstract_inverted_index.algorithmic | 67 |
| abstract_inverted_index.expectation | 36 |
| abstract_inverted_index.limitations | 229 |
| abstract_inverted_index.measurement | 195 |
| abstract_inverted_index.repetition. | 45, 234 |
| abstract_inverted_index.significant | 83 |
| abstract_inverted_index.techniques, | 150 |
| abstract_inverted_index.Furthermore, | 183 |
| abstract_inverted_index.Hamiltonian. | 182 |
| abstract_inverted_index.Hamiltonians | 6 |
| abstract_inverted_index.additionally | 125 |
| abstract_inverted_index.applications | 13 |
| abstract_inverted_index.arbitrarily. | 203 |
| abstract_inverted_index.configurable | 189 |
| abstract_inverted_index.conventional | 149 |
| abstract_inverted_index.qubit-number | 228 |
| abstract_inverted_index.Interpolation | 53 |
| abstract_inverted_index.Probabilistic | 51 |
| abstract_inverted_index.circuit-depth | 226 |
| abstract_inverted_index.measurements. | 115 |
| abstract_inverted_index.discretisation | 65 |
| abstract_inverted_index.fault-tolerant | 130, 175, 220 |
| abstract_inverted_index.implementation | 131 |
| abstract_inverted_index.teleportation, | 137 |
| abstract_inverted_index.Lieb–Robinson | 80 |
| abstract_inverted_index.<mml:mn>3</mml:mn> | 159 |
| abstract_inverted_index.<mml:mn>5</mml:mn> | 164 |
| abstract_inverted_index.overflow="scroll"> | 157 |
| abstract_inverted_index.<mml:mn>10</mml:mn> | 162 |
| abstract_inverted_index.<mml:mo>×</mml:mo> | 160 |
| abstract_inverted_index.Trotterization—we | 153 |
| abstract_inverted_index.repeat-until-success | 136 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 156 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.95905874 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |