TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.15657
In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.15657
- https://arxiv.org/pdf/2408.15657
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402705939
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402705939Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.15657Digital Object Identifier
- Title
-
TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-28Full publication date if available
- Authors
-
Junbao Zhou, Jilin Mei, Pengze Wu, Liang Chen, Fangzhou Zhao, Xijun Zhao, Yu HuList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.15657Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.15657Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.15657Direct OA link when available
- Concepts
-
Shot (pellet), Lidar, Forgetting, Segmentation, Artificial intelligence, Tracking (education), Computer science, Computer vision, Single shot, Remote sensing, Geology, Cognitive psychology, Psychology, Physics, Materials science, Optics, Metallurgy, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402705939 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.15657 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.15657 |
| ids.openalex | https://openalex.org/W4402705939 |
| fwci | |
| type | preprint |
| title | TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778344882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7677709460258484 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[0].display_name | Shot (pellet) |
| concepts[1].id | https://openalex.org/C51399673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7552183270454407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[1].display_name | Lidar |
| concepts[2].id | https://openalex.org/C7149132 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7513705492019653 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[2].display_name | Forgetting |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6658051609992981 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5633085370063782 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2775936607 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5436605215072632 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[5].display_name | Tracking (education) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5297155380249023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4998598098754883 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C3019835501 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43401286005973816 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1310130 |
| concepts[8].display_name | Single shot |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31787770986557007 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2686949372291565 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C180747234 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17065468430519104 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[11].display_name | Cognitive psychology |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13095644116401672 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11949729919433594 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11930838227272034 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10536044836044312 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C191897082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[16].display_name | Metallurgy |
| concepts[17].id | https://openalex.org/C19417346 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[17].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/shot |
| keywords[0].score | 0.7677709460258484 |
| keywords[0].display_name | Shot (pellet) |
| keywords[1].id | https://openalex.org/keywords/lidar |
| keywords[1].score | 0.7552183270454407 |
| keywords[1].display_name | Lidar |
| keywords[2].id | https://openalex.org/keywords/forgetting |
| keywords[2].score | 0.7513705492019653 |
| keywords[2].display_name | Forgetting |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6658051609992981 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5633085370063782 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/tracking |
| keywords[5].score | 0.5436605215072632 |
| keywords[5].display_name | Tracking (education) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5297155380249023 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4998598098754883 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/single-shot |
| keywords[8].score | 0.43401286005973816 |
| keywords[8].display_name | Single shot |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.31787770986557007 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.2686949372291565 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[11].score | 0.17065468430519104 |
| keywords[11].display_name | Cognitive psychology |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.13095644116401672 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.11949729919433594 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.11930838227272034 |
| keywords[14].display_name | Materials science |
| keywords[15].id | https://openalex.org/keywords/optics |
| keywords[15].score | 0.10536044836044312 |
| keywords[15].display_name | Optics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.15657 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.15657 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.15657 |
| locations[1].id | doi:10.48550/arxiv.2408.15657 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.15657 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082187586 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Junbao Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Junbao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064630457 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3326-1632 |
| authorships[1].author.display_name | Jilin Mei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mei, Jilin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074357710 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1397-8556 |
| authorships[2].author.display_name | Pengze Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Pengze |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5115076721 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-6731-3515 |
| authorships[3].author.display_name | Liang Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Liang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008969492 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9006-7740 |
| authorships[4].author.display_name | Fangzhou Zhao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao, Fangzhou |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002980949 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2090-3648 |
| authorships[5].author.display_name | Xijun Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhao, Xijun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100432169 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5616-9233 |
| authorships[6].author.display_name | Yu Hu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hu, Yu |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.15657 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W3142396426, https://openalex.org/W2471333042, https://openalex.org/W4396643691, https://openalex.org/W4402383816, https://openalex.org/W2955491601, https://openalex.org/W146529714, https://openalex.org/W4402559869, https://openalex.org/W2316500695, https://openalex.org/W2017914143, https://openalex.org/W146242624 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.15657 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.15657 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.15657 |
| primary_location.id | pmh:oai:arXiv.org:2408.15657 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.15657 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.15657 |
| publication_date | 2024-08-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 46, 53, 77, 86, 98, 125 |
| abstract_inverted_index.3D | 3, 131 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 92 |
| abstract_inverted_index.at | 142 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 9, 129 |
| abstract_inverted_index.is | 140 |
| abstract_inverted_index.of | 32, 42, 55, 89, 104 |
| abstract_inverted_index.on | 70, 112 |
| abstract_inverted_index.to | 49, 68, 81, 119 |
| abstract_inverted_index.we | 95 |
| abstract_inverted_index.Our | 138 |
| abstract_inverted_index.for | 24, 135 |
| abstract_inverted_index.its | 117 |
| abstract_inverted_index.new | 87 |
| abstract_inverted_index.our | 58 |
| abstract_inverted_index.the | 11, 15, 30, 39, 62, 65, 102, 109 |
| abstract_inverted_index.This | 27, 122 |
| abstract_inverted_index.base | 113 |
| abstract_inverted_index.code | 139 |
| abstract_inverted_index.data | 78, 83 |
| abstract_inverted_index.from | 52 |
| abstract_inverted_index.role | 8 |
| abstract_inverted_index.step | 127 |
| abstract_inverted_index.that | 84, 100 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.work | 123 |
| abstract_inverted_index.LiDAR | 4, 43, 56, 132 |
| abstract_inverted_index.LoRA, | 97 |
| abstract_inverted_index.data. | 44 |
| abstract_inverted_index.learn | 69 |
| abstract_inverted_index.model | 48 |
| abstract_inverted_index.newly | 16 |
| abstract_inverted_index.novel | 71, 82, 120 |
| abstract_inverted_index.paper | 28 |
| abstract_inverted_index.plays | 5 |
| abstract_inverted_index.this, | 94 |
| abstract_inverted_index.while | 115 |
| abstract_inverted_index.biased | 80 |
| abstract_inverted_index.method | 59 |
| abstract_inverted_index.number | 103 |
| abstract_inverted_index.ability | 67 |
| abstract_inverted_index.classes | 114 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.current | 33 |
| abstract_inverted_index.forward | 128 |
| abstract_inverted_index.frames, | 57 |
| abstract_inverted_index.model's | 66, 110 |
| abstract_inverted_index.objects | 19 |
| abstract_inverted_index.problem | 23 |
| abstract_inverted_index.reduces | 101 |
| abstract_inverted_index.thereby | 107 |
| abstract_inverted_index.However, | 14, 73 |
| abstract_inverted_index.approach | 75 |
| abstract_inverted_index.augments | 61 |
| abstract_inverted_index.classes. | 72, 121 |
| abstract_inverted_index.dataset, | 63 |
| abstract_inverted_index.driving, | 2 |
| abstract_inverted_index.driving. | 137 |
| abstract_inverted_index.emerged, | 17 |
| abstract_inverted_index.few-shot | 21, 34, 130 |
| abstract_inverted_index.generate | 50 |
| abstract_inverted_index.learning | 22 |
| abstract_inverted_index.mitigate | 93 |
| abstract_inverted_index.presents | 20, 85 |
| abstract_inverted_index.semantic | 25, 35, 133 |
| abstract_inverted_index.sequence | 54 |
| abstract_inverted_index.temporal | 40 |
| abstract_inverted_index.tracking | 47 |
| abstract_inverted_index.Employing | 45 |
| abstract_inverted_index.addresses | 29 |
| abstract_inverted_index.available | 141 |
| abstract_inverted_index.challenge | 88 |
| abstract_inverted_index.enhancing | 64 |
| abstract_inverted_index.imbalance | 79 |
| abstract_inverted_index.improving | 116 |
| abstract_inverted_index.technique | 99 |
| abstract_inverted_index.trainable | 105 |
| abstract_inverted_index.vehicle's | 12 |
| abstract_inverted_index.autonomous | 1, 136 |
| abstract_inverted_index.continuity | 41 |
| abstract_inverted_index.exploiting | 38 |
| abstract_inverted_index.introduces | 76 |
| abstract_inverted_index.preserving | 108 |
| abstract_inverted_index.represents | 124 |
| abstract_inverted_index.forgetting. | 91 |
| abstract_inverted_index.incorporate | 96 |
| abstract_inverted_index.limitations | 31 |
| abstract_inverted_index.parameters, | 106 |
| abstract_inverted_index.performance | 111 |
| abstract_inverted_index.significant | 126 |
| abstract_inverted_index.unannotated | 18 |
| abstract_inverted_index.adaptability | 118 |
| abstract_inverted_index.catastrophic | 90 |
| abstract_inverted_index.segmentation | 36, 134 |
| abstract_inverted_index.segmentation. | 26 |
| abstract_inverted_index.significantly | 60 |
| abstract_inverted_index.surroundings. | 13 |
| abstract_inverted_index.understanding | 10 |
| abstract_inverted_index.pseudo-ground-truths | 51 |
| abstract_inverted_index.https://github.com/junbao-zhou/Track-no-forgetting. | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |