Temporal differentiation by neural network designed multilayer metamaterial Article Swipe
Tony Knightley
,
Alex Yakovlev
,
Víctor Pacheco‐Peña
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.46620/ursigass.2023.1855.xrwv5241
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.46620/ursigass.2023.1855.xrwv5241
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.46620/ursigass.2023.1855.xrwv5241
- https://doi.org/10.46620/ursigass.2023.1855.xrwv5241
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389271180
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389271180Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46620/ursigass.2023.1855.xrwv5241Digital Object Identifier
- Title
-
Temporal differentiation by neural network designed multilayer metamaterialWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Tony Knightley, Alex Yakovlev, Víctor Pacheco‐PeñaList of authors in order
- Landing page
-
https://doi.org/10.46620/ursigass.2023.1855.xrwv5241Publisher landing page
- PDF URL
-
https://doi.org/10.46620/ursigass.2023.1855.xrwv5241Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.46620/ursigass.2023.1855.xrwv5241Direct OA link when available
- Concepts
-
Metamaterial, Artificial neural network, Computer science, Materials science, Optoelectronics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389271180 |
|---|---|
| doi | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| ids.doi | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| ids.openalex | https://openalex.org/W4389271180 |
| fwci | 0.0 |
| type | article |
| title | Temporal differentiation by neural network designed multilayer metamaterial |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14474 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.3504999876022339 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Industrial Technology and Control Systems |
| topics[1].id | https://openalex.org/T14446 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.32179999351501465 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2200 |
| topics[1].subfield.display_name | General Engineering |
| topics[1].display_name | Civil and Geotechnical Engineering Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C110367647 |
| concepts[0].level | 2 |
| concepts[0].score | 0.743044376373291 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q497166 |
| concepts[0].display_name | Metamaterial |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6014184355735779 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5863609313964844 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2356097400188446 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C49040817 |
| concepts[4].level | 1 |
| concepts[4].score | 0.22328445315361023 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[4].display_name | Optoelectronics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.16526225209236145 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/metamaterial |
| keywords[0].score | 0.743044376373291 |
| keywords[0].display_name | Metamaterial |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6014184355735779 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5863609313964844 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.2356097400188446 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/optoelectronics |
| keywords[4].score | 0.22328445315361023 |
| keywords[4].display_name | Optoelectronics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.16526225209236145 |
| keywords[5].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.46620/ursigass.2023.1855.xrwv5241 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the XXXVth URSI General Assembly and Scientific Symposium – GASS 2023 |
| locations[0].landing_page_url | http://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| locations[1].id | pmh:oai:eprints.ncl.ac.uk:300409 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5037739040 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tony Knightley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tony Knightley |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029446985 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0826-9330 |
| authorships[1].author.display_name | Alex Yakovlev |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alex Yakovlev |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055713054 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2373-7796 |
| authorships[2].author.display_name | Víctor Pacheco‐Peña |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Victor Pacheco-Peña |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Temporal differentiation by neural network designed multilayer metamaterial |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14474 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.3504999876022339 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Industrial Technology and Control Systems |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W1570806970, https://openalex.org/W2174268617, https://openalex.org/W4386932413, https://openalex.org/W2545051477, https://openalex.org/W3021878631, https://openalex.org/W2045305845, https://openalex.org/W3169542578, https://openalex.org/W3045326985 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.46620/ursigass.2023.1855.xrwv5241 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the XXXVth URSI General Assembly and Scientific Symposium – GASS 2023 |
| best_oa_location.landing_page_url | http://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| primary_location.id | doi:10.46620/ursigass.2023.1855.xrwv5241 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the XXXVth URSI General Assembly and Scientific Symposium – GASS 2023 |
| primary_location.landing_page_url | http://doi.org/10.46620/ursigass.2023.1855.xrwv5241 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4200405972, https://openalex.org/W3001227219, https://openalex.org/W6807877516, https://openalex.org/W6678194950, https://openalex.org/W6980566659, https://openalex.org/W6646784840, https://openalex.org/W3161979687, https://openalex.org/W6785077001, https://openalex.org/W4280521349, https://openalex.org/W3101066814, https://openalex.org/W2077151136, https://openalex.org/W3101128759, https://openalex.org/W2923873769, https://openalex.org/W4308457393, https://openalex.org/W47054843, https://openalex.org/W3011034263, https://openalex.org/W4376595525, https://openalex.org/W1987242404, https://openalex.org/W3094613760, https://openalex.org/W2122765624, https://openalex.org/W4312184177 |
| referenced_works_count | 21 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.22689748 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |