Temporal exponential random graph models of longitudinal brain networks after stroke Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1098/rsif.2021.0850
Plasticity after stroke is a complex phenomenon. Functional reorganization occurs not only in the perilesional tissue but throughout the brain. However, the local connection mechanisms generating such global network changes remain largely unknown. To address this question, time must be considered as a formal variable of the problem rather than a simple repeated observation. Here, we hypothesized that the presence of temporal connection motifs, such as the formation of temporal triangles ( T ) and edges ( E ) over time, would explain large-scale brain reorganization after stroke. To test our hypothesis, we adopted a statistical framework based on temporal exponential random graph models (tERGMs), where the aforementioned temporal motifs were implemented as parameters and adapted to capture global network changes after stroke. We first validated the performance on synthetic time-varying networks as compared to standard static approaches. Then, using real functional brain networks, we showed that estimates of tERGM parameters were sufficient to reproduce brain network changes from 2 weeks to 1 year after stroke. These temporal connection signatures, reflecting within-hemisphere segregation ( T ) and between hemisphere integration ( E ), were associated with patients' future behaviour. In particular, interhemispheric temporal edges significantly correlated with the chronic language and visual outcome in subcortical and cortical stroke, respectively. Our results indicate the importance of time-varying connection properties when modelling dynamic complex systems and provide fresh insights into modelling of brain network mechanisms after stroke.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1098/rsif.2021.0850
- https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850
- OA Status
- bronze
- Cited By
- 7
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214878651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214878651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1098/rsif.2021.0850Digital Object Identifier
- Title
-
Temporal exponential random graph models of longitudinal brain networks after strokeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-01Full publication date if available
- Authors
-
Catalina Obando, Charlotte Rosso, Joshua S. Siegel, Maurizio Corbetta, Fabrizio De Vico FallaniList of authors in order
- Landing page
-
https://doi.org/10.1098/rsif.2021.0850Publisher landing page
- PDF URL
-
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850Direct OA link when available
- Concepts
-
Stroke (engine), Neuroscience, Stroke recovery, Neuroplasticity, Computer science, Exponential random graph models, Network model, Connectome, Graph, Artificial intelligence, Psychology, Random graph, Functional connectivity, Theoretical computer science, Physics, Thermodynamics, RehabilitationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214878651 |
|---|---|
| doi | https://doi.org/10.1098/rsif.2021.0850 |
| ids.doi | https://doi.org/10.1098/rsif.2021.0850 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35232279 |
| ids.openalex | https://openalex.org/W4214878651 |
| fwci | 1.12364639 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D001921 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Brain |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001931 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Brain Mapping |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007802 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Language |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008279 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Magnetic Resonance Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D009415 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Nerve Net |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D020521 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Stroke |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001921 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Brain |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D001931 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Brain Mapping |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D007802 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Language |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008279 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Magnetic Resonance Imaging |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D009415 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Nerve Net |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D020521 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Stroke |
| type | article |
| title | Temporal exponential random graph models of longitudinal brain networks after stroke |
| awards[0].id | https://openalex.org/G1983663055 |
| awards[0].funder_id | https://openalex.org/F4320338335 |
| awards[0].display_name | Non-invasive decoding of brain communication patterns to ease motor restoration after stroke |
| awards[0].funder_award_id | 864729 |
| awards[0].funder_display_name | H2020 European Research Council |
| biblio.issue | 188 |
| biblio.volume | 19 |
| biblio.last_page | 20210850 |
| biblio.first_page | 20210850 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| funders[0].id | https://openalex.org/F4320338335 |
| funders[0].ror | https://ror.org/0472cxd90 |
| funders[0].display_name | H2020 European Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780645631 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6005089282989502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[0].display_name | Stroke (engine) |
| concepts[1].id | https://openalex.org/C169760540 |
| concepts[1].level | 1 |
| concepts[1].score | 0.49088412523269653 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[1].display_name | Neuroscience |
| concepts[2].id | https://openalex.org/C2776361831 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4621018171310425 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10681911 |
| concepts[2].display_name | Stroke recovery |
| concepts[3].id | https://openalex.org/C47611674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46100494265556335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q849491 |
| concepts[3].display_name | Neuroplasticity |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4549001455307007 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C30549945 |
| concepts[5].level | 4 |
| concepts[5].score | 0.42732366919517517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5421526 |
| concepts[5].display_name | Exponential random graph models |
| concepts[6].id | https://openalex.org/C104122410 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42453548312187195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1416406 |
| concepts[6].display_name | Network model |
| concepts[7].id | https://openalex.org/C45715564 |
| concepts[7].level | 3 |
| concepts[7].score | 0.415388822555542 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[7].display_name | Connectome |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3988792300224304 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3912208080291748 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3871227204799652 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C47458327 |
| concepts[11].level | 3 |
| concepts[11].score | 0.37516283988952637 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q910404 |
| concepts[11].display_name | Random graph |
| concepts[12].id | https://openalex.org/C3018011982 |
| concepts[12].level | 2 |
| concepts[12].score | 0.307653546333313 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[12].display_name | Functional connectivity |
| concepts[13].id | https://openalex.org/C80444323 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19607198238372803 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[13].display_name | Theoretical computer science |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10913681983947754 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| concepts[16].id | https://openalex.org/C2778818304 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1819478 |
| concepts[16].display_name | Rehabilitation |
| keywords[0].id | https://openalex.org/keywords/stroke |
| keywords[0].score | 0.6005089282989502 |
| keywords[0].display_name | Stroke (engine) |
| keywords[1].id | https://openalex.org/keywords/neuroscience |
| keywords[1].score | 0.49088412523269653 |
| keywords[1].display_name | Neuroscience |
| keywords[2].id | https://openalex.org/keywords/stroke-recovery |
| keywords[2].score | 0.4621018171310425 |
| keywords[2].display_name | Stroke recovery |
| keywords[3].id | https://openalex.org/keywords/neuroplasticity |
| keywords[3].score | 0.46100494265556335 |
| keywords[3].display_name | Neuroplasticity |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4549001455307007 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/exponential-random-graph-models |
| keywords[5].score | 0.42732366919517517 |
| keywords[5].display_name | Exponential random graph models |
| keywords[6].id | https://openalex.org/keywords/network-model |
| keywords[6].score | 0.42453548312187195 |
| keywords[6].display_name | Network model |
| keywords[7].id | https://openalex.org/keywords/connectome |
| keywords[7].score | 0.415388822555542 |
| keywords[7].display_name | Connectome |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.3988792300224304 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3912208080291748 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.3871227204799652 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/random-graph |
| keywords[11].score | 0.37516283988952637 |
| keywords[11].display_name | Random graph |
| keywords[12].id | https://openalex.org/keywords/functional-connectivity |
| keywords[12].score | 0.307653546333313 |
| keywords[12].display_name | Functional connectivity |
| keywords[13].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[13].score | 0.19607198238372803 |
| keywords[13].display_name | Theoretical computer science |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.10913681983947754 |
| keywords[14].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1098/rsif.2021.0850 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S129150467 |
| locations[0].source.issn | 1742-5662, 1742-5689 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1742-5662 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of The Royal Society Interface |
| locations[0].source.host_organization | https://openalex.org/P4310319787 |
| locations[0].source.host_organization_name | Royal Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319787 |
| locations[0].source.host_organization_lineage_names | Royal Society |
| locations[0].license | |
| locations[0].pdf_url | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of The Royal Society Interface |
| locations[0].landing_page_url | https://doi.org/10.1098/rsif.2021.0850 |
| locations[1].id | pmid:35232279 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the Royal Society, Interface |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35232279 |
| locations[2].id | pmh:oai:HAL:hal-03668512v1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal articles |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of the Royal Society Interface, 2022, 19 (188), pp.20210850. ⟨10.1098/rsif.2021.0850⟩ |
| locations[2].landing_page_url | https://inria.hal.science/hal-03668512 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8889176 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J R Soc Interface |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8889176 |
| locations[4].id | pmh:oai:www.research.unipd.it:11577/3479874 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306402448 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Padua Research Archive (University of Padua) |
| locations[4].source.host_organization | https://openalex.org/I138689650 |
| locations[4].source.host_organization_name | University of Padua |
| locations[4].source.host_organization_lineage | https://openalex.org/I138689650 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://hdl.handle.net/11577/3479874 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5075052977 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Catalina Obando |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210097159, https://openalex.org/I4210121705, https://openalex.org/I4210152724 |
| authorships[0].affiliations[0].raw_affiliation_string | Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| authorships[0].affiliations[1].raw_affiliation_string | Algorithms, models and methods for images and signals of the human brain |
| authorships[0].institutions[0].id | https://openalex.org/I4210097159 |
| authorships[0].institutions[0].ror | https://ror.org/00pg5jh14 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210097159 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Assistance Publique – Hôpitaux de Paris |
| authorships[0].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[0].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[0].institutions[2].id | https://openalex.org/I154526488 |
| authorships[0].institutions[2].ror | https://ror.org/02vjkv261 |
| authorships[0].institutions[2].type | government |
| authorships[0].institutions[2].lineage | https://openalex.org/I154526488 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Inserm |
| authorships[0].institutions[3].id | https://openalex.org/I4210152724 |
| authorships[0].institutions[3].ror | https://ror.org/050gn5214 |
| authorships[0].institutions[3].type | facility |
| authorships[0].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210096427, https://openalex.org/I4210152724 |
| authorships[0].institutions[3].country_code | FR |
| authorships[0].institutions[3].display_name | Institut du Cerveau |
| authorships[0].institutions[4].id | https://openalex.org/I4210121705 |
| authorships[0].institutions[4].ror | https://ror.org/02mh9a093 |
| authorships[0].institutions[4].type | healthcare |
| authorships[0].institutions[4].lineage | https://openalex.org/I4210097159, https://openalex.org/I4210121705 |
| authorships[0].institutions[4].country_code | FR |
| authorships[0].institutions[4].display_name | Pitié-Salpêtrière Hospital |
| authorships[0].institutions[5].id | https://openalex.org/I39804081 |
| authorships[0].institutions[5].ror | https://ror.org/02en5vm52 |
| authorships[0].institutions[5].type | education |
| authorships[0].institutions[5].lineage | https://openalex.org/I39804081 |
| authorships[0].institutions[5].country_code | FR |
| authorships[0].institutions[5].display_name | Sorbonne Université |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Catalina Obando |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Algorithms, models and methods for images and signals of the human brain, Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| authorships[1].author.id | https://openalex.org/A5071631063 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7236-1508 |
| authorships[1].author.display_name | Charlotte Rosso |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39804081, https://openalex.org/I4210097159, https://openalex.org/I4210121705 |
| authorships[1].affiliations[0].raw_affiliation_string | AP-HP, Urgences Cerebro-Vasculaires, Hopital Pitie-Salpetriere, Paris, France |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210097159, https://openalex.org/I4210121705, https://openalex.org/I4210152724 |
| authorships[1].affiliations[1].raw_affiliation_string | Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| authorships[1].affiliations[2].raw_affiliation_string | ICM Infrastructure Stroke Network, STAR team, Hopital Pitie-Salpetriere, Paris, France |
| authorships[1].institutions[0].id | https://openalex.org/I4210097159 |
| authorships[1].institutions[0].ror | https://ror.org/00pg5jh14 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210097159 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Assistance Publique – Hôpitaux de Paris |
| authorships[1].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[1].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[1].institutions[2].id | https://openalex.org/I154526488 |
| authorships[1].institutions[2].ror | https://ror.org/02vjkv261 |
| authorships[1].institutions[2].type | government |
| authorships[1].institutions[2].lineage | https://openalex.org/I154526488 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Inserm |
| authorships[1].institutions[3].id | https://openalex.org/I4210152724 |
| authorships[1].institutions[3].ror | https://ror.org/050gn5214 |
| authorships[1].institutions[3].type | facility |
| authorships[1].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210096427, https://openalex.org/I4210152724 |
| authorships[1].institutions[3].country_code | FR |
| authorships[1].institutions[3].display_name | Institut du Cerveau |
| authorships[1].institutions[4].id | https://openalex.org/I4210121705 |
| authorships[1].institutions[4].ror | https://ror.org/02mh9a093 |
| authorships[1].institutions[4].type | healthcare |
| authorships[1].institutions[4].lineage | https://openalex.org/I4210097159, https://openalex.org/I4210121705 |
| authorships[1].institutions[4].country_code | FR |
| authorships[1].institutions[4].display_name | Pitié-Salpêtrière Hospital |
| authorships[1].institutions[5].id | https://openalex.org/I39804081 |
| authorships[1].institutions[5].ror | https://ror.org/02en5vm52 |
| authorships[1].institutions[5].type | education |
| authorships[1].institutions[5].lineage | https://openalex.org/I39804081 |
| authorships[1].institutions[5].country_code | FR |
| authorships[1].institutions[5].display_name | Sorbonne Université |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Charlotte Rosso |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | AP-HP, Urgences Cerebro-Vasculaires, Hopital Pitie-Salpetriere, Paris, France, ICM Infrastructure Stroke Network, STAR team, Hopital Pitie-Salpetriere, Paris, France, Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| authorships[2].author.id | https://openalex.org/A5075343216 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5752-3641 |
| authorships[2].author.display_name | Joshua S. Siegel |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204465549 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Psychiatry, Washington University, St Louis, MO, USA |
| authorships[2].institutions[0].id | https://openalex.org/I204465549 |
| authorships[2].institutions[0].ror | https://ror.org/01yc7t268 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204465549 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Washington University in St. Louis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshua Siegel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Psychiatry, Washington University, St Louis, MO, USA |
| authorships[3].author.id | https://openalex.org/A5081199735 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8295-3304 |
| authorships[3].author.display_name | Maurizio Corbetta |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210087465 |
| authorships[3].affiliations[0].raw_affiliation_string | Venetian Institute of Molecular Medicine (VIMM), Padova, Italy |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I138689650 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Neuroscience and Padova Neuroscience Center, University of Padova, Padova, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I138689650 |
| authorships[3].institutions[0].ror | https://ror.org/00240q980 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I138689650 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Padua |
| authorships[3].institutions[1].id | https://openalex.org/I4210087465 |
| authorships[3].institutions[1].ror | https://ror.org/0048jxt15 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210087465 |
| authorships[3].institutions[1].country_code | IT |
| authorships[3].institutions[1].display_name | Veneto Institute of Molecular Medicine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maurizio Corbetta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Neuroscience and Padova Neuroscience Center, University of Padova, Padova, Italy, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy |
| authorships[4].author.id | https://openalex.org/A5089157446 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8035-7883 |
| authorships[4].author.display_name | Fabrizio De Vico Fallani |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210097159, https://openalex.org/I4210121705, https://openalex.org/I4210152724 |
| authorships[4].affiliations[0].raw_affiliation_string | Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| authorships[4].affiliations[1].raw_affiliation_string | Algorithms, models and methods for images and signals of the human brain |
| authorships[4].institutions[0].id | https://openalex.org/I4210097159 |
| authorships[4].institutions[0].ror | https://ror.org/00pg5jh14 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210097159 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Assistance Publique – Hôpitaux de Paris |
| authorships[4].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[4].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[4].institutions[2].id | https://openalex.org/I154526488 |
| authorships[4].institutions[2].ror | https://ror.org/02vjkv261 |
| authorships[4].institutions[2].type | government |
| authorships[4].institutions[2].lineage | https://openalex.org/I154526488 |
| authorships[4].institutions[2].country_code | FR |
| authorships[4].institutions[2].display_name | Inserm |
| authorships[4].institutions[3].id | https://openalex.org/I4210152724 |
| authorships[4].institutions[3].ror | https://ror.org/050gn5214 |
| authorships[4].institutions[3].type | facility |
| authorships[4].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210096427, https://openalex.org/I4210152724 |
| authorships[4].institutions[3].country_code | FR |
| authorships[4].institutions[3].display_name | Institut du Cerveau |
| authorships[4].institutions[4].id | https://openalex.org/I4210121705 |
| authorships[4].institutions[4].ror | https://ror.org/02mh9a093 |
| authorships[4].institutions[4].type | healthcare |
| authorships[4].institutions[4].lineage | https://openalex.org/I4210097159, https://openalex.org/I4210121705 |
| authorships[4].institutions[4].country_code | FR |
| authorships[4].institutions[4].display_name | Pitié-Salpêtrière Hospital |
| authorships[4].institutions[5].id | https://openalex.org/I39804081 |
| authorships[4].institutions[5].ror | https://ror.org/02en5vm52 |
| authorships[4].institutions[5].type | education |
| authorships[4].institutions[5].lineage | https://openalex.org/I39804081 |
| authorships[4].institutions[5].country_code | FR |
| authorships[4].institutions[5].display_name | Sorbonne Université |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fabrizio De Vico Fallani |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Algorithms, models and methods for images and signals of the human brain, Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Temporal exponential random graph models of longitudinal brain networks after stroke |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W3102036813, https://openalex.org/W2600013268, https://openalex.org/W2359341608, https://openalex.org/W2597949273, https://openalex.org/W3007771191, https://openalex.org/W2154529522, https://openalex.org/W3106517793, https://openalex.org/W1967599767, https://openalex.org/W4299984326, https://openalex.org/W2483587347 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1098/rsif.2021.0850 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S129150467 |
| best_oa_location.source.issn | 1742-5662, 1742-5689 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1742-5662 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of The Royal Society Interface |
| best_oa_location.source.host_organization | https://openalex.org/P4310319787 |
| best_oa_location.source.host_organization_name | Royal Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319787 |
| best_oa_location.source.host_organization_lineage_names | Royal Society |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of The Royal Society Interface |
| best_oa_location.landing_page_url | https://doi.org/10.1098/rsif.2021.0850 |
| primary_location.id | doi:10.1098/rsif.2021.0850 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S129150467 |
| primary_location.source.issn | 1742-5662, 1742-5689 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1742-5662 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of The Royal Society Interface |
| primary_location.source.host_organization | https://openalex.org/P4310319787 |
| primary_location.source.host_organization_name | Royal Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319787 |
| primary_location.source.host_organization_lineage_names | Royal Society |
| primary_location.license | |
| primary_location.pdf_url | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2021.0850 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of The Royal Society Interface |
| primary_location.landing_page_url | https://doi.org/10.1098/rsif.2021.0850 |
| publication_date | 2022-03-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2125191569, https://openalex.org/W2146193588, https://openalex.org/W2068741908, https://openalex.org/W2082641523, https://openalex.org/W2472295098, https://openalex.org/W2045756227, https://openalex.org/W2162075347, https://openalex.org/W2069539036, https://openalex.org/W2022104574, https://openalex.org/W2415995053, https://openalex.org/W2782495832, https://openalex.org/W2476479720, https://openalex.org/W3037819556, https://openalex.org/W2142029338, https://openalex.org/W2059763605, https://openalex.org/W2952801982, https://openalex.org/W2537627674, https://openalex.org/W2143909130, https://openalex.org/W2108923082, https://openalex.org/W2180060901, https://openalex.org/W2964346271, https://openalex.org/W2963284032, https://openalex.org/W2553951788, https://openalex.org/W2151936673, https://openalex.org/W2051239559, https://openalex.org/W1983208069, https://openalex.org/W2110344324, https://openalex.org/W2107499714, https://openalex.org/W2160268549, https://openalex.org/W2156770396, https://openalex.org/W2061752069, https://openalex.org/W2567503720, https://openalex.org/W2110065044, https://openalex.org/W2124118965, https://openalex.org/W2600539050, https://openalex.org/W2136404265, https://openalex.org/W2529434361, https://openalex.org/W2765216222, https://openalex.org/W2951401594, https://openalex.org/W2261682450, https://openalex.org/W2027200896, https://openalex.org/W1974590317, https://openalex.org/W2088939948, https://openalex.org/W1977399050, https://openalex.org/W2963119842, https://openalex.org/W2963350607, https://openalex.org/W2112090702, https://openalex.org/W2070722739, https://openalex.org/W2153234270, https://openalex.org/W3034778884, https://openalex.org/W2075956695, https://openalex.org/W2070815227, https://openalex.org/W2047330754, https://openalex.org/W2090497082, https://openalex.org/W2088905367, https://openalex.org/W2105504969, https://openalex.org/W2504084072, https://openalex.org/W2963348735, https://openalex.org/W2141447814, https://openalex.org/W2153030296, https://openalex.org/W1984000685, https://openalex.org/W1964841512, https://openalex.org/W2105435743, https://openalex.org/W2033228536, https://openalex.org/W2060623117, https://openalex.org/W2168076838, https://openalex.org/W2588745466, https://openalex.org/W2114441144, https://openalex.org/W1976623182, https://openalex.org/W1965048988, https://openalex.org/W2574529642, https://openalex.org/W2074617510, https://openalex.org/W4214878651, https://openalex.org/W3102500902, https://openalex.org/W2618294461, https://openalex.org/W3044727169, https://openalex.org/W1990134753, https://openalex.org/W3098724218, https://openalex.org/W2048857243, https://openalex.org/W2509256556 |
| referenced_works_count | 80 |
| abstract_inverted_index.( | 71, 76, 173, 180 |
| abstract_inverted_index.) | 73, 78, 175 |
| abstract_inverted_index.1 | 162 |
| abstract_inverted_index.2 | 159 |
| abstract_inverted_index.E | 77, 181 |
| abstract_inverted_index.T | 72, 174 |
| abstract_inverted_index.a | 4, 42, 50, 94 |
| abstract_inverted_index.), | 182 |
| abstract_inverted_index.In | 189 |
| abstract_inverted_index.To | 33, 88 |
| abstract_inverted_index.We | 123 |
| abstract_inverted_index.as | 41, 65, 112, 132 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.in | 12, 203 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 45, 60, 68, 148, 214, 229 |
| abstract_inverted_index.on | 98, 128 |
| abstract_inverted_index.to | 116, 134, 153, 161 |
| abstract_inverted_index.we | 55, 92, 144 |
| abstract_inverted_index.Our | 209 |
| abstract_inverted_index.and | 74, 114, 176, 200, 205, 223 |
| abstract_inverted_index.but | 16 |
| abstract_inverted_index.not | 10 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.the | 13, 18, 21, 46, 58, 66, 106, 126, 197, 212 |
| abstract_inverted_index.from | 158 |
| abstract_inverted_index.into | 227 |
| abstract_inverted_index.must | 38 |
| abstract_inverted_index.only | 11 |
| abstract_inverted_index.over | 79 |
| abstract_inverted_index.real | 140 |
| abstract_inverted_index.such | 26, 64 |
| abstract_inverted_index.test | 89 |
| abstract_inverted_index.than | 49 |
| abstract_inverted_index.that | 57, 146 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.time | 37 |
| abstract_inverted_index.were | 110, 151, 183 |
| abstract_inverted_index.when | 218 |
| abstract_inverted_index.with | 185, 196 |
| abstract_inverted_index.year | 163 |
| abstract_inverted_index.Here, | 54 |
| abstract_inverted_index.Then, | 138 |
| abstract_inverted_index.These | 166 |
| abstract_inverted_index.after | 1, 86, 121, 164, 233 |
| abstract_inverted_index.based | 97 |
| abstract_inverted_index.brain | 84, 142, 155, 230 |
| abstract_inverted_index.edges | 75, 193 |
| abstract_inverted_index.first | 124 |
| abstract_inverted_index.fresh | 225 |
| abstract_inverted_index.graph | 102 |
| abstract_inverted_index.local | 22 |
| abstract_inverted_index.tERGM | 149 |
| abstract_inverted_index.time, | 80 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.weeks | 160 |
| abstract_inverted_index.where | 105 |
| abstract_inverted_index.would | 81 |
| abstract_inverted_index.brain. | 19 |
| abstract_inverted_index.formal | 43 |
| abstract_inverted_index.future | 187 |
| abstract_inverted_index.global | 27, 118 |
| abstract_inverted_index.models | 103 |
| abstract_inverted_index.motifs | 109 |
| abstract_inverted_index.occurs | 9 |
| abstract_inverted_index.random | 101 |
| abstract_inverted_index.rather | 48 |
| abstract_inverted_index.remain | 30 |
| abstract_inverted_index.showed | 145 |
| abstract_inverted_index.simple | 51 |
| abstract_inverted_index.static | 136 |
| abstract_inverted_index.stroke | 2 |
| abstract_inverted_index.tissue | 15 |
| abstract_inverted_index.visual | 201 |
| abstract_inverted_index.adapted | 115 |
| abstract_inverted_index.address | 34 |
| abstract_inverted_index.adopted | 93 |
| abstract_inverted_index.between | 177 |
| abstract_inverted_index.capture | 117 |
| abstract_inverted_index.changes | 29, 120, 157 |
| abstract_inverted_index.chronic | 198 |
| abstract_inverted_index.complex | 5, 221 |
| abstract_inverted_index.dynamic | 220 |
| abstract_inverted_index.explain | 82 |
| abstract_inverted_index.largely | 31 |
| abstract_inverted_index.motifs, | 63 |
| abstract_inverted_index.network | 28, 119, 156, 231 |
| abstract_inverted_index.outcome | 202 |
| abstract_inverted_index.problem | 47 |
| abstract_inverted_index.provide | 224 |
| abstract_inverted_index.results | 210 |
| abstract_inverted_index.stroke, | 207 |
| abstract_inverted_index.stroke. | 87, 122, 165, 234 |
| abstract_inverted_index.systems | 222 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.compared | 133 |
| abstract_inverted_index.cortical | 206 |
| abstract_inverted_index.indicate | 211 |
| abstract_inverted_index.insights | 226 |
| abstract_inverted_index.language | 199 |
| abstract_inverted_index.networks | 131 |
| abstract_inverted_index.presence | 59 |
| abstract_inverted_index.repeated | 52 |
| abstract_inverted_index.standard | 135 |
| abstract_inverted_index.temporal | 61, 69, 99, 108, 167, 192 |
| abstract_inverted_index.unknown. | 32 |
| abstract_inverted_index.variable | 44 |
| abstract_inverted_index.(tERGMs), | 104 |
| abstract_inverted_index.estimates | 147 |
| abstract_inverted_index.formation | 67 |
| abstract_inverted_index.framework | 96 |
| abstract_inverted_index.modelling | 219, 228 |
| abstract_inverted_index.networks, | 143 |
| abstract_inverted_index.patients' | 186 |
| abstract_inverted_index.question, | 36 |
| abstract_inverted_index.reproduce | 154 |
| abstract_inverted_index.synthetic | 129 |
| abstract_inverted_index.triangles | 70 |
| abstract_inverted_index.validated | 125 |
| abstract_inverted_index.Functional | 7 |
| abstract_inverted_index.Plasticity | 0 |
| abstract_inverted_index.associated | 184 |
| abstract_inverted_index.behaviour. | 188 |
| abstract_inverted_index.connection | 23, 62, 168, 216 |
| abstract_inverted_index.considered | 40 |
| abstract_inverted_index.correlated | 195 |
| abstract_inverted_index.functional | 141 |
| abstract_inverted_index.generating | 25 |
| abstract_inverted_index.hemisphere | 178 |
| abstract_inverted_index.importance | 213 |
| abstract_inverted_index.mechanisms | 24, 232 |
| abstract_inverted_index.parameters | 113, 150 |
| abstract_inverted_index.properties | 217 |
| abstract_inverted_index.reflecting | 170 |
| abstract_inverted_index.sufficient | 152 |
| abstract_inverted_index.throughout | 17 |
| abstract_inverted_index.approaches. | 137 |
| abstract_inverted_index.exponential | 100 |
| abstract_inverted_index.hypothesis, | 91 |
| abstract_inverted_index.implemented | 111 |
| abstract_inverted_index.integration | 179 |
| abstract_inverted_index.large-scale | 83 |
| abstract_inverted_index.particular, | 190 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.phenomenon. | 6 |
| abstract_inverted_index.segregation | 172 |
| abstract_inverted_index.signatures, | 169 |
| abstract_inverted_index.statistical | 95 |
| abstract_inverted_index.subcortical | 204 |
| abstract_inverted_index.hypothesized | 56 |
| abstract_inverted_index.observation. | 53 |
| abstract_inverted_index.perilesional | 14 |
| abstract_inverted_index.time-varying | 130, 215 |
| abstract_inverted_index.respectively. | 208 |
| abstract_inverted_index.significantly | 194 |
| abstract_inverted_index.aforementioned | 107 |
| abstract_inverted_index.reorganization | 8, 85 |
| abstract_inverted_index.interhemispheric | 191 |
| abstract_inverted_index.within-hemisphere | 171 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.7020247 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |