Temporal Feature Prediction in Audio–Visual Deepfake Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13173433
The rapid growth of deepfake technology, generating realistic manipulated media, poses a significant threat due to potential misuse. Therefore, effective detection methods are urgently needed to prevent malicious use, as current approaches often focus on single modalities or the simple fusion of audio–visual signals, limiting their accuracy. To solve this problem, we propose a deepfake detection scheme based on bimodal temporal feature prediction, which innovatively introduces the idea of temporal feature prediction into the audio–video bimodal deepfake detection task, aiming at fully exploiting the temporal laws of audio–visual modalities. First, pairs of adjacent audio–video sequence clips are used to construct input quadruples, and a dual-stream network is employed to extract temporal feature representations from video and audio, respectively. A video prediction module and an audio prediction module are designed to capture the temporal inconsistencies within each single modality by predicting future temporal features and comparing them with reference features. Then, a projection layer network is designed to align the audio–visual features, using contrastive loss functions to perform contrastive learning and maximize the differences between real and fake video modalities. Experiments on the FakeAVCeleb dataset demonstrate superior performance with an accuracy of 84.33% and an AUC of 89.91%, outperforming existing methods and confirming the effectiveness of our approach in deepfake detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13173433
- OA Status
- gold
- Cited By
- 9
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401991736
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401991736Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13173433Digital Object Identifier
- Title
-
Temporal Feature Prediction in Audio–Visual Deepfake DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-29Full publication date if available
- Authors
-
Yuan Gao, Xuelong Wang, Yu Zhang, Ping Zeng, Yingjie MaList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13173433Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics13173433Direct OA link when available
- Concepts
-
Feature (linguistics), Audio visual, Computer science, Pattern recognition (psychology), Artificial intelligence, Multimedia, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401991736 |
|---|---|
| doi | https://doi.org/10.3390/electronics13173433 |
| ids.doi | https://doi.org/10.3390/electronics13173433 |
| ids.openalex | https://openalex.org/W4401991736 |
| fwci | 4.77141804 |
| type | article |
| title | Temporal Feature Prediction in Audio–Visual Deepfake Detection |
| awards[0].id | https://openalex.org/G3001288036 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | 3282024052 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 17 |
| biblio.volume | 13 |
| biblio.last_page | 3433 |
| biblio.first_page | 3433 |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| funders[0].id | https://openalex.org/F4320335787 |
| funders[0].ror | |
| funders[0].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6968473196029663 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C3017588708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6926352977752686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q758901 |
| concepts[1].display_name | Audio visual |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5953687429428101 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5235987901687622 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5173630118370056 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C49774154 |
| concepts[5].level | 1 |
| concepts[5].score | 0.13717103004455566 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[5].display_name | Multimedia |
| concepts[6].id | https://openalex.org/C41895202 |
| concepts[6].level | 1 |
| concepts[6].score | 0.052805423736572266 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[6].display_name | Linguistics |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6968473196029663 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/audio-visual |
| keywords[1].score | 0.6926352977752686 |
| keywords[1].display_name | Audio visual |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5953687429428101 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5235987901687622 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5173630118370056 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/multimedia |
| keywords[5].score | 0.13717103004455566 |
| keywords[5].display_name | Multimedia |
| keywords[6].id | https://openalex.org/keywords/linguistics |
| keywords[6].score | 0.052805423736572266 |
| keywords[6].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.3390/electronics13173433 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13173433 |
| locations[1].id | pmh:oai:mdpi.com:/2079-9292/13/17/3433/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/electronics13173433 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074618663 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7007-9605 |
| authorships[0].author.display_name | Yuan Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | State Information Center, Beijing 100045, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I202334528 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[0].institutions[0].id | https://openalex.org/I202334528 |
| authorships[0].institutions[0].ror | https://ror.org/01xdzh226 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I202334528 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Electronic Science and Technology Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China, State Information Center, Beijing 100045, China |
| authorships[1].author.id | https://openalex.org/A5035420625 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2652-944X |
| authorships[1].author.display_name | Xuelong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I202334528 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[1].institutions[0].id | https://openalex.org/I202334528 |
| authorships[1].institutions[0].ror | https://ror.org/01xdzh226 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I202334528 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Electronic Science and Technology Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuelong Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[2].author.id | https://openalex.org/A5115595679 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8296-154X |
| authorships[2].author.display_name | Yu Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Telecommunications Engineering, Xidian University, Xi’an 710071, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I202334528 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[2].institutions[0].id | https://openalex.org/I202334528 |
| authorships[2].institutions[0].ror | https://ror.org/01xdzh226 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I202334528 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Electronic Science and Technology Institute |
| authorships[2].institutions[1].id | https://openalex.org/I149594827 |
| authorships[2].institutions[1].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China |
| authorships[3].author.id | https://openalex.org/A5010438328 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2710-3440 |
| authorships[3].author.display_name | Ping Zeng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Telecommunications Engineering, Xidian University, Xi’an 710071, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I202334528 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[3].institutions[0].id | https://openalex.org/I202334528 |
| authorships[3].institutions[0].ror | https://ror.org/01xdzh226 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I202334528 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Electronic Science and Technology Institute |
| authorships[3].institutions[1].id | https://openalex.org/I149594827 |
| authorships[3].institutions[1].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ping Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China |
| authorships[4].author.id | https://openalex.org/A5100535101 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yingjie Ma |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I202334528 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| authorships[4].institutions[0].id | https://openalex.org/I202334528 |
| authorships[4].institutions[0].ror | https://ror.org/01xdzh226 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I202334528 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Electronic Science and Technology Institute |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yingjie Ma |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics13173433 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Temporal Feature Prediction in Audio–Visual Deepfake Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2271369634, https://openalex.org/W3147472394, https://openalex.org/W2047100085, https://openalex.org/W2350550760, https://openalex.org/W578794879, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W4386159726 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/electronics13173433 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13173433 |
| primary_location.id | doi:10.3390/electronics13173433 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13173433 |
| publication_date | 2024-08-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2942074357, https://openalex.org/W3034900344, https://openalex.org/W6780316881, https://openalex.org/W3034196597, https://openalex.org/W4214680478, https://openalex.org/W3094728142, https://openalex.org/W3176241004, https://openalex.org/W3183999072, https://openalex.org/W6810868502, https://openalex.org/W6794693742, https://openalex.org/W4322576470, https://openalex.org/W3175342695, https://openalex.org/W4386072334, https://openalex.org/W4398789263, https://openalex.org/W4381140704, https://openalex.org/W4360993864, https://openalex.org/W4385805162, https://openalex.org/W4392942875, https://openalex.org/W4214691743, https://openalex.org/W4320882980, https://openalex.org/W3093010840, https://openalex.org/W3093077034, https://openalex.org/W4312472072, https://openalex.org/W4386267173, https://openalex.org/W6810653054, https://openalex.org/W4385801058, https://openalex.org/W4280577432, https://openalex.org/W4391799307, https://openalex.org/W4367016785, https://openalex.org/W2963307811, https://openalex.org/W2581625266, https://openalex.org/W2984287396, https://openalex.org/W2194775991, https://openalex.org/W6739901393, https://openalex.org/W2982058372, https://openalex.org/W3174508664, https://openalex.org/W4226024856, https://openalex.org/W4386928847, https://openalex.org/W4401413990, https://openalex.org/W3037391061, https://openalex.org/W4385245566, https://openalex.org/W3158353280 |
| referenced_works_count | 42 |
| abstract_inverted_index.A | 118 |
| abstract_inverted_index.a | 11, 53, 103, 150 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.an | 123, 188, 193 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.at | 80 |
| abstract_inverted_index.by | 138 |
| abstract_inverted_index.in | 207 |
| abstract_inverted_index.is | 106, 154 |
| abstract_inverted_index.of | 3, 41, 68, 86, 91, 190, 195, 204 |
| abstract_inverted_index.on | 34, 58, 180 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 15, 25, 98, 108, 129, 156, 165 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.AUC | 194 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 102, 115, 122, 143, 169, 175, 192, 200 |
| abstract_inverted_index.are | 22, 96, 127 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.our | 205 |
| abstract_inverted_index.the | 38, 66, 73, 83, 131, 158, 171, 181, 202 |
| abstract_inverted_index.each | 135 |
| abstract_inverted_index.fake | 176 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.idea | 67 |
| abstract_inverted_index.into | 72 |
| abstract_inverted_index.laws | 85 |
| abstract_inverted_index.loss | 163 |
| abstract_inverted_index.real | 174 |
| abstract_inverted_index.them | 145 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.use, | 28 |
| abstract_inverted_index.used | 97 |
| abstract_inverted_index.with | 146, 187 |
| abstract_inverted_index.Then, | 149 |
| abstract_inverted_index.align | 157 |
| abstract_inverted_index.audio | 124 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.clips | 95 |
| abstract_inverted_index.focus | 33 |
| abstract_inverted_index.fully | 81 |
| abstract_inverted_index.input | 100 |
| abstract_inverted_index.layer | 152 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.pairs | 90 |
| abstract_inverted_index.poses | 10 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.solve | 48 |
| abstract_inverted_index.task, | 78 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.using | 161 |
| abstract_inverted_index.video | 114, 119, 177 |
| abstract_inverted_index.which | 63 |
| abstract_inverted_index.84.33% | 191 |
| abstract_inverted_index.First, | 89 |
| abstract_inverted_index.aiming | 79 |
| abstract_inverted_index.audio, | 116 |
| abstract_inverted_index.fusion | 40 |
| abstract_inverted_index.future | 140 |
| abstract_inverted_index.growth | 2 |
| abstract_inverted_index.media, | 9 |
| abstract_inverted_index.module | 121, 126 |
| abstract_inverted_index.needed | 24 |
| abstract_inverted_index.scheme | 56 |
| abstract_inverted_index.simple | 39 |
| abstract_inverted_index.single | 35, 136 |
| abstract_inverted_index.threat | 13 |
| abstract_inverted_index.within | 134 |
| abstract_inverted_index.89.91%, | 196 |
| abstract_inverted_index.between | 173 |
| abstract_inverted_index.bimodal | 59, 75 |
| abstract_inverted_index.capture | 130 |
| abstract_inverted_index.current | 30 |
| abstract_inverted_index.dataset | 183 |
| abstract_inverted_index.extract | 109 |
| abstract_inverted_index.feature | 61, 70, 111 |
| abstract_inverted_index.methods | 21, 199 |
| abstract_inverted_index.misuse. | 17 |
| abstract_inverted_index.network | 105, 153 |
| abstract_inverted_index.perform | 166 |
| abstract_inverted_index.prevent | 26 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.accuracy | 189 |
| abstract_inverted_index.adjacent | 92 |
| abstract_inverted_index.approach | 206 |
| abstract_inverted_index.deepfake | 4, 54, 76, 208 |
| abstract_inverted_index.designed | 128, 155 |
| abstract_inverted_index.employed | 107 |
| abstract_inverted_index.existing | 198 |
| abstract_inverted_index.features | 142 |
| abstract_inverted_index.learning | 168 |
| abstract_inverted_index.limiting | 44 |
| abstract_inverted_index.maximize | 170 |
| abstract_inverted_index.modality | 137 |
| abstract_inverted_index.problem, | 50 |
| abstract_inverted_index.sequence | 94 |
| abstract_inverted_index.signals, | 43 |
| abstract_inverted_index.superior | 185 |
| abstract_inverted_index.temporal | 60, 69, 84, 110, 132, 141 |
| abstract_inverted_index.urgently | 23 |
| abstract_inverted_index.accuracy. | 46 |
| abstract_inverted_index.comparing | 144 |
| abstract_inverted_index.construct | 99 |
| abstract_inverted_index.detection | 20, 55, 77 |
| abstract_inverted_index.effective | 19 |
| abstract_inverted_index.features, | 160 |
| abstract_inverted_index.features. | 148 |
| abstract_inverted_index.functions | 164 |
| abstract_inverted_index.malicious | 27 |
| abstract_inverted_index.potential | 16 |
| abstract_inverted_index.realistic | 7 |
| abstract_inverted_index.reference | 147 |
| abstract_inverted_index.Therefore, | 18 |
| abstract_inverted_index.approaches | 31 |
| abstract_inverted_index.confirming | 201 |
| abstract_inverted_index.detection. | 209 |
| abstract_inverted_index.exploiting | 82 |
| abstract_inverted_index.generating | 6 |
| abstract_inverted_index.introduces | 65 |
| abstract_inverted_index.modalities | 36 |
| abstract_inverted_index.predicting | 139 |
| abstract_inverted_index.prediction | 71, 120, 125 |
| abstract_inverted_index.projection | 151 |
| abstract_inverted_index.Experiments | 179 |
| abstract_inverted_index.FakeAVCeleb | 182 |
| abstract_inverted_index.contrastive | 162, 167 |
| abstract_inverted_index.demonstrate | 184 |
| abstract_inverted_index.differences | 172 |
| abstract_inverted_index.dual-stream | 104 |
| abstract_inverted_index.manipulated | 8 |
| abstract_inverted_index.modalities. | 88, 178 |
| abstract_inverted_index.performance | 186 |
| abstract_inverted_index.prediction, | 62 |
| abstract_inverted_index.quadruples, | 101 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.technology, | 5 |
| abstract_inverted_index.innovatively | 64 |
| abstract_inverted_index.audio–video | 74, 93 |
| abstract_inverted_index.effectiveness | 203 |
| abstract_inverted_index.outperforming | 197 |
| abstract_inverted_index.respectively. | 117 |
| abstract_inverted_index.audio–visual | 42, 87, 159 |
| abstract_inverted_index.inconsistencies | 133 |
| abstract_inverted_index.representations | 112 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.92773755 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |