Temporal variations in the non-linear relationships between metro ridership and the built environment: insights from interpretable machine learning using four-year data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/iti/liae023
Understanding the association between metro ridership and the built environment is crucial for promoting integrated transportation and land use planning. However, prior research has rarely examined the temporally varying and/or non-linear associations between metro ridership and the built environment. To address this gap, this study collects metro ridership data in Chengdu, China, for January of each year between 2019 and 2022 and uses light gradient-boosting machine and SHapley Additive exPlanations models to examine the complex, non-linear associations between metro ridership and the built environment over 4 years. Our findings highlight the non-linear nature of the built environment’s influence. The key predictors remained relatively stable throughout the years, including the number of entrances (the top predictor across all years), employment density, and the floor area ratio. However, the influence of built environment factors, such as land-use mix, residential micro-district density, and distance to the city center, shows great temporal variations, underscoring the importance of incorporating temporal dynamics into analyses of the interactions between metro ridership and the built environment. This study offers a valuable reference for urban and transportation planners in crafting tailored policies for station-area transit-oriented development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/iti/liae023
- https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdf
- OA Status
- diamond
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405694857
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405694857Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/iti/liae023Digital Object Identifier
- Title
-
Temporal variations in the non-linear relationships between metro ridership and the built environment: insights from interpretable machine learning using four-year dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Linchuan Yang, Ying’ao Peng, Jie Chen, Yanan Liu, Haosen YangList of authors in order
- Landing page
-
https://doi.org/10.1093/iti/liae023Publisher landing page
- PDF URL
-
https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdfDirect OA link when available
- Concepts
-
Computer science, Machine learning, Data science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405694857 |
|---|---|
| doi | https://doi.org/10.1093/iti/liae023 |
| ids.doi | https://doi.org/10.1093/iti/liae023 |
| ids.openalex | https://openalex.org/W4405694857 |
| fwci | 0.0 |
| type | article |
| title | Temporal variations in the non-linear relationships between metro ridership and the built environment: insights from interpretable machine learning using four-year data |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10298 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Urban Transport and Accessibility |
| topics[1].id | https://openalex.org/T10370 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Traffic and Road Safety |
| topics[2].id | https://openalex.org/T11692 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.960099995136261 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3616 |
| topics[2].subfield.display_name | Speech and Hearing |
| topics[2].display_name | Noise Effects and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4989798069000244 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.42074695229530334 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.40125975012779236 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3450852334499359 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4989798069000244 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.42074695229530334 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.40125975012779236 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3450852334499359 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1093/iti/liae023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387280672 |
| locations[0].source.issn | 2752-9991 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2752-9991 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Intelligent Transportation Infrastructure |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Intelligent Transportation Infrastructure |
| locations[0].landing_page_url | https://doi.org/10.1093/iti/liae023 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5027149750 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6070-9044 |
| authorships[0].author.display_name | Linchuan Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[0].institutions[0].id | https://openalex.org/I4800084 |
| authorships[0].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southwest Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Linchuan Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[1].author.id | https://openalex.org/A5119246654 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5171-4992 |
| authorships[1].author.display_name | Ying’ao Peng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[1].institutions[0].id | https://openalex.org/I4800084 |
| authorships[1].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southwest Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ying’ao Peng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[2].author.id | https://openalex.org/A5102959886 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1399-0106 |
| authorships[2].author.display_name | Jie Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[2].institutions[0].id | https://openalex.org/I4800084 |
| authorships[2].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southwest Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jie Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[3].author.id | https://openalex.org/A5107274487 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8582-9824 |
| authorships[3].author.display_name | Yanan Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[3].institutions[0].id | https://openalex.org/I4800084 |
| authorships[3].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southwest Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanan Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[4].author.id | https://openalex.org/A5101999981 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-4438-1578 |
| authorships[4].author.display_name | Haosen Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| authorships[4].institutions[0].id | https://openalex.org/I4800084 |
| authorships[4].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Southwest Jiaotong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Haosen Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu 611756, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Temporal variations in the non-linear relationships between metro ridership and the built environment: insights from interpretable machine learning using four-year data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10298 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Urban Transport and Accessibility |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/iti/liae023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387280672 |
| best_oa_location.source.issn | 2752-9991 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2752-9991 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Intelligent Transportation Infrastructure |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Intelligent Transportation Infrastructure |
| best_oa_location.landing_page_url | https://doi.org/10.1093/iti/liae023 |
| primary_location.id | doi:10.1093/iti/liae023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387280672 |
| primary_location.source.issn | 2752-9991 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2752-9991 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Intelligent Transportation Infrastructure |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/iti/advance-article-pdf/doi/10.1093/iti/liae023/61261760/liae023.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Intelligent Transportation Infrastructure |
| primary_location.landing_page_url | https://doi.org/10.1093/iti/liae023 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2946584714, https://openalex.org/W3175724752, https://openalex.org/W2011572448, https://openalex.org/W2956045439, https://openalex.org/W2943360680, https://openalex.org/W2144512297, https://openalex.org/W3014121980, https://openalex.org/W4296907699, https://openalex.org/W1957281453, https://openalex.org/W4405228726, https://openalex.org/W2017948541, https://openalex.org/W4387589929, https://openalex.org/W2999339909, https://openalex.org/W4313269280, https://openalex.org/W3036110098, https://openalex.org/W2999615587, https://openalex.org/W2792803029, https://openalex.org/W4401836150, https://openalex.org/W4402026162, https://openalex.org/W4386540827, https://openalex.org/W3093055868, https://openalex.org/W2085996514, https://openalex.org/W4298142808, https://openalex.org/W2076431592, https://openalex.org/W2044007257, https://openalex.org/W2014352883, https://openalex.org/W1973858892, https://openalex.org/W2803826011, https://openalex.org/W4367296488, https://openalex.org/W4399516571, https://openalex.org/W4395084990, https://openalex.org/W3166458872, https://openalex.org/W3034394904, https://openalex.org/W4386579416, https://openalex.org/W4313435862, https://openalex.org/W4210722001, https://openalex.org/W1996658168, https://openalex.org/W4404664728, https://openalex.org/W2768348081, https://openalex.org/W2962862931 |
| referenced_works_count | 40 |
| abstract_inverted_index.4 | 86 |
| abstract_inverted_index.a | 172 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.as | 134 |
| abstract_inverted_index.in | 50, 180 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 55, 94, 111, 129, 153, 159 |
| abstract_inverted_index.to | 72, 142 |
| abstract_inverted_index.Our | 88 |
| abstract_inverted_index.The | 99 |
| abstract_inverted_index.all | 117 |
| abstract_inverted_index.and | 7, 17, 36, 60, 62, 67, 81, 121, 140, 165, 177 |
| abstract_inverted_index.for | 13, 53, 175, 184 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.key | 100 |
| abstract_inverted_index.the | 2, 8, 27, 37, 74, 82, 91, 95, 106, 109, 122, 127, 143, 151, 160, 166 |
| abstract_inverted_index.top | 114 |
| abstract_inverted_index.use | 19 |
| abstract_inverted_index.(the | 113 |
| abstract_inverted_index.2019 | 59 |
| abstract_inverted_index.2022 | 61 |
| abstract_inverted_index.This | 169 |
| abstract_inverted_index.area | 124 |
| abstract_inverted_index.city | 144 |
| abstract_inverted_index.data | 49 |
| abstract_inverted_index.each | 56 |
| abstract_inverted_index.gap, | 43 |
| abstract_inverted_index.into | 157 |
| abstract_inverted_index.land | 18 |
| abstract_inverted_index.mix, | 136 |
| abstract_inverted_index.over | 85 |
| abstract_inverted_index.such | 133 |
| abstract_inverted_index.this | 42, 44 |
| abstract_inverted_index.uses | 63 |
| abstract_inverted_index.year | 57 |
| abstract_inverted_index.built | 9, 38, 83, 96, 130, 167 |
| abstract_inverted_index.floor | 123 |
| abstract_inverted_index.great | 147 |
| abstract_inverted_index.light | 64 |
| abstract_inverted_index.metro | 5, 34, 47, 79, 163 |
| abstract_inverted_index.prior | 22 |
| abstract_inverted_index.shows | 146 |
| abstract_inverted_index.study | 45, 170 |
| abstract_inverted_index.urban | 176 |
| abstract_inverted_index.China, | 52 |
| abstract_inverted_index.across | 116 |
| abstract_inverted_index.and/or | 30 |
| abstract_inverted_index.models | 71 |
| abstract_inverted_index.nature | 93 |
| abstract_inverted_index.number | 110 |
| abstract_inverted_index.offers | 171 |
| abstract_inverted_index.rarely | 25 |
| abstract_inverted_index.ratio. | 125 |
| abstract_inverted_index.stable | 104 |
| abstract_inverted_index.years, | 107 |
| abstract_inverted_index.years. | 87 |
| abstract_inverted_index.January | 54 |
| abstract_inverted_index.SHapley | 68 |
| abstract_inverted_index.address | 41 |
| abstract_inverted_index.between | 4, 33, 58, 78, 162 |
| abstract_inverted_index.center, | 145 |
| abstract_inverted_index.crucial | 12 |
| abstract_inverted_index.examine | 73 |
| abstract_inverted_index.machine | 66 |
| abstract_inverted_index.varying | 29 |
| abstract_inverted_index.years), | 118 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Additive | 69 |
| abstract_inverted_index.Chengdu, | 51 |
| abstract_inverted_index.However, | 21, 126 |
| abstract_inverted_index.analyses | 158 |
| abstract_inverted_index.collects | 46 |
| abstract_inverted_index.complex, | 75 |
| abstract_inverted_index.crafting | 181 |
| abstract_inverted_index.density, | 120, 139 |
| abstract_inverted_index.distance | 141 |
| abstract_inverted_index.dynamics | 156 |
| abstract_inverted_index.examined | 26 |
| abstract_inverted_index.factors, | 132 |
| abstract_inverted_index.findings | 89 |
| abstract_inverted_index.land-use | 135 |
| abstract_inverted_index.planners | 179 |
| abstract_inverted_index.policies | 183 |
| abstract_inverted_index.remained | 102 |
| abstract_inverted_index.research | 23 |
| abstract_inverted_index.tailored | 182 |
| abstract_inverted_index.temporal | 148, 155 |
| abstract_inverted_index.valuable | 173 |
| abstract_inverted_index.entrances | 112 |
| abstract_inverted_index.highlight | 90 |
| abstract_inverted_index.including | 108 |
| abstract_inverted_index.influence | 128 |
| abstract_inverted_index.planning. | 20 |
| abstract_inverted_index.predictor | 115 |
| abstract_inverted_index.promoting | 14 |
| abstract_inverted_index.reference | 174 |
| abstract_inverted_index.ridership | 6, 35, 48, 80, 164 |
| abstract_inverted_index.employment | 119 |
| abstract_inverted_index.importance | 152 |
| abstract_inverted_index.influence. | 98 |
| abstract_inverted_index.integrated | 15 |
| abstract_inverted_index.non-linear | 31, 76, 92 |
| abstract_inverted_index.predictors | 101 |
| abstract_inverted_index.relatively | 103 |
| abstract_inverted_index.temporally | 28 |
| abstract_inverted_index.throughout | 105 |
| abstract_inverted_index.association | 3 |
| abstract_inverted_index.environment | 10, 84, 131 |
| abstract_inverted_index.residential | 137 |
| abstract_inverted_index.variations, | 149 |
| abstract_inverted_index.associations | 32, 77 |
| abstract_inverted_index.development. | 187 |
| abstract_inverted_index.environment. | 39, 168 |
| abstract_inverted_index.exPlanations | 70 |
| abstract_inverted_index.interactions | 161 |
| abstract_inverted_index.station-area | 185 |
| abstract_inverted_index.underscoring | 150 |
| abstract_inverted_index.Understanding | 1 |
| abstract_inverted_index.incorporating | 154 |
| abstract_inverted_index.micro-district | 138 |
| abstract_inverted_index.transportation | 16, 178 |
| abstract_inverted_index.environment’s | 97 |
| abstract_inverted_index.transit-oriented | 186 |
| abstract_inverted_index.gradient-boosting | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.20683575 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |