Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.18848
Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/39319220
- OA Status
- green
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400141613
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400141613Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.18848Digital Object Identifier
- Title
-
Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data ImputationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-27Full publication date if available
- Authors
-
Hui Wei, Maxwell A. Xu, Colin Samplawski, James M. Rehg, Santosh Kumar, Benjamin M. MarlinList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/39319220Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.18848Direct OA link when available
- Concepts
-
Imputation (statistics), Computer science, Wearable computer, Missing data, Data set, Scale (ratio), Data mining, Construct (python library), Wearable technology, Artificial intelligence, Machine learning, Programming language, Physics, Quantum mechanics, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400141613 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.18848 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.18848 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39319220 |
| ids.openalex | https://openalex.org/W4400141613 |
| fwci | |
| type | preprint |
| title | Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation |
| biblio.issue | |
| biblio.volume | 248 |
| biblio.last_page | 154 |
| biblio.first_page | 137 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T10352 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9846000075340271 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Physical Activity and Health |
| topics[2].id | https://openalex.org/T11446 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Mobile Health and mHealth Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7448562383651733 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7162871956825256 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C150594956 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6722127199172974 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[2].display_name | Wearable computer |
| concepts[3].id | https://openalex.org/C9357733 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6411582231521606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[3].display_name | Missing data |
| concepts[4].id | https://openalex.org/C58489278 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5019583702087402 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[4].display_name | Data set |
| concepts[5].id | https://openalex.org/C2778755073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48952946066856384 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[5].display_name | Scale (ratio) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46856099367141724 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C2780801425 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46476635336875916 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[7].display_name | Construct (python library) |
| concepts[8].id | https://openalex.org/C54290928 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43358585238456726 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4845080 |
| concepts[8].display_name | Wearable technology |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39026975631713867 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34740912914276123 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.7448562383651733 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7162871956825256 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/wearable-computer |
| keywords[2].score | 0.6722127199172974 |
| keywords[2].display_name | Wearable computer |
| keywords[3].id | https://openalex.org/keywords/missing-data |
| keywords[3].score | 0.6411582231521606 |
| keywords[3].display_name | Missing data |
| keywords[4].id | https://openalex.org/keywords/data-set |
| keywords[4].score | 0.5019583702087402 |
| keywords[4].display_name | Data set |
| keywords[5].id | https://openalex.org/keywords/scale |
| keywords[5].score | 0.48952946066856384 |
| keywords[5].display_name | Scale (ratio) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.46856099367141724 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/construct |
| keywords[7].score | 0.46476635336875916 |
| keywords[7].display_name | Construct (python library) |
| keywords[8].id | https://openalex.org/keywords/wearable-technology |
| keywords[8].score | 0.43358585238456726 |
| keywords[8].display_name | Wearable technology |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.39026975631713867 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.34740912914276123 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | pmid:39319220 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of machine learning research |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39319220 |
| locations[1].id | pmh:oai:arXiv.org:2406.18848 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2406.18848 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2406.18848 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11421853 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc Mach Learn Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11421853 |
| locations[3].id | doi:10.48550/arxiv.2406.18848 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2406.18848 |
| indexed_in | arxiv, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5023374816 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2462-8180 |
| authorships[0].author.display_name | Hui Wei |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177605424, https://openalex.org/I24603500 |
| authorships[0].affiliations[0].raw_affiliation_string | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| authorships[0].institutions[0].id | https://openalex.org/I177605424 |
| authorships[0].institutions[0].ror | https://ror.org/028vqfs63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177605424 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Amherst College |
| authorships[0].institutions[1].id | https://openalex.org/I24603500 |
| authorships[0].institutions[1].ror | https://ror.org/0072zz521 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I24603500 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Massachusetts Amherst |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hui Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| authorships[1].author.id | https://openalex.org/A5011893527 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1017-3840 |
| authorships[1].author.display_name | Maxwell A. Xu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Interactive Computing, Georgia Institute of Technology. |
| authorships[1].institutions[0].id | https://openalex.org/I130701444 |
| authorships[1].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maxwell A Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Interactive Computing, Georgia Institute of Technology. |
| authorships[2].author.id | https://openalex.org/A5011915615 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Colin Samplawski |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177605424, https://openalex.org/I24603500 |
| authorships[2].affiliations[0].raw_affiliation_string | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| authorships[2].institutions[0].id | https://openalex.org/I177605424 |
| authorships[2].institutions[0].ror | https://ror.org/028vqfs63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177605424 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Amherst College |
| authorships[2].institutions[1].id | https://openalex.org/I24603500 |
| authorships[2].institutions[1].ror | https://ror.org/0072zz521 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I24603500 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of Massachusetts Amherst |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Colin Samplawski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| authorships[3].author.id | https://openalex.org/A5002228469 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1793-5462 |
| authorships[3].author.display_name | James M. Rehg |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois Urbana-Champaign. |
| authorships[3].institutions[0].id | https://openalex.org/I157725225 |
| authorships[3].institutions[0].ror | https://ror.org/047426m28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | James M Rehg |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Illinois Urbana-Champaign. |
| authorships[4].author.id | https://openalex.org/A5074683604 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1560-1664 |
| authorships[4].author.display_name | Santosh Kumar |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I94658018 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Memphis. |
| authorships[4].institutions[0].id | https://openalex.org/I94658018 |
| authorships[4].institutions[0].ror | https://ror.org/01cq23130 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I94658018 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Memphis |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Santosh Kumar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, University of Memphis. |
| authorships[5].author.id | https://openalex.org/A5023142437 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2626-3410 |
| authorships[5].author.display_name | Benjamin M. Marlin |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I177605424, https://openalex.org/I24603500 |
| authorships[5].affiliations[0].raw_affiliation_string | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| authorships[5].institutions[0].id | https://openalex.org/I177605424 |
| authorships[5].institutions[0].ror | https://ror.org/028vqfs63 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177605424 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Amherst College |
| authorships[5].institutions[1].id | https://openalex.org/I24603500 |
| authorships[5].institutions[1].ror | https://ror.org/0072zz521 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I24603500 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | University of Massachusetts Amherst |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Benjamin M Marlin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Manning College of Information & Computer Sciences, University of Massachusetts Amherst. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.18848 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-29T00:00:00 |
| display_name | Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W2055961818, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.18848 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.18848 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.18848 |
| primary_location.id | pmid:39319220 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of machine learning research |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39319220 |
| publication_date | 2024-06-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2794582352 |
| referenced_works_count | 1 |
| abstract_inverted_index.3 | 75 |
| abstract_inverted_index.a | 30, 61, 70, 82, 95 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.We | 59, 93, 113 |
| abstract_inverted_index.be | 23 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.of | 14, 33, 42, 44, 50, 55, 69, 110, 117 |
| abstract_inverted_index.to | 5, 10, 25, 29, 121, 127 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.2.5 | 87 |
| abstract_inverted_index.and | 63, 81, 123 |
| abstract_inverted_index.can | 22 |
| abstract_inverted_index.due | 28 |
| abstract_inverted_index.for | 101 |
| abstract_inverted_index.one | 49 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.set | 67, 72, 84 |
| abstract_inverted_index.the | 11, 40, 51, 106, 115, 118 |
| abstract_inverted_index.data | 8, 21, 66 |
| abstract_inverted_index.most | 52 |
| abstract_inverted_index.over | 74, 86 |
| abstract_inverted_index.step | 46, 78, 90 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.task | 103 |
| abstract_inverted_index.test | 83 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.this | 36, 102 |
| abstract_inverted_index.with | 73, 85 |
| abstract_inverted_index.count | 47, 79, 91 |
| abstract_inverted_index.data, | 48 |
| abstract_inverted_index.data. | 58, 112 |
| abstract_inverted_index.forms | 54 |
| abstract_inverted_index.large | 64 |
| abstract_inverted_index.model | 100, 119, 131 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.scale | 65 |
| abstract_inverted_index.state | 13 |
| abstract_inverted_index.study | 39 |
| abstract_inverted_index.work, | 37 |
| abstract_inverted_index.assess | 114 |
| abstract_inverted_index.domain | 96 |
| abstract_inverted_index.enable | 2 |
| abstract_inverted_index.health | 3 |
| abstract_inverted_index.hourly | 77, 89 |
| abstract_inverted_index.nature | 109 |
| abstract_inverted_index.sensor | 57 |
| abstract_inverted_index.sparse | 98 |
| abstract_inverted_index.verify | 128 |
| abstract_inverted_index.collect | 7 |
| abstract_inverted_index.complex | 31 |
| abstract_inverted_index.conduct | 124 |
| abstract_inverted_index.million | 76, 88 |
| abstract_inverted_index.missing | 45 |
| abstract_inverted_index.problem | 41 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.sensors | 1 |
| abstract_inverted_index.studies | 126 |
| abstract_inverted_index.subject | 24 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Wearable | 0 |
| abstract_inverted_index.ablation | 125 |
| abstract_inverted_index.captures | 105 |
| abstract_inverted_index.designs. | 132 |
| abstract_inverted_index.factors. | 34 |
| abstract_inverted_index.relative | 120 |
| abstract_inverted_index.specific | 130 |
| abstract_inverted_index.temporal | 107 |
| abstract_inverted_index.training | 71 |
| abstract_inverted_index.wearable | 56 |
| abstract_inverted_index.baselines | 122 |
| abstract_inverted_index.construct | 60 |
| abstract_inverted_index.extensive | 26 |
| abstract_inverted_index.settings. | 18 |
| abstract_inverted_index.consisting | 68 |
| abstract_inverted_index.imputation | 43 |
| abstract_inverted_index.pertaining | 9 |
| abstract_inverted_index.real-world | 17 |
| abstract_inverted_index.step-count | 111 |
| abstract_inverted_index.ubiquitous | 53 |
| abstract_inverted_index.combination | 32 |
| abstract_inverted_index.individuals | 15 |
| abstract_inverted_index.missingness | 27 |
| abstract_inverted_index.multi-scale | 108 |
| abstract_inverted_index.performance | 116 |
| abstract_inverted_index.researchers | 4 |
| abstract_inverted_index.continuously | 6 |
| abstract_inverted_index.observations | 80 |
| abstract_inverted_index.observations. | 92 |
| abstract_inverted_index.physiological | 12 |
| abstract_inverted_index.self-attention | 99 |
| abstract_inverted_index.knowledge-informed | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |