TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction Article Swipe
Yuting Wang
,
Hangning Zhou
,
Zhigang Zhang
,
Feng Chen
,
Huadong Lin
,
Chaofei Gao
,
Yizhi Tang
,
Zhenting Zhao
,
Shiyu Zhang
,
Jie Guo
,
Xuefeng Wang
,
Ziyao Xu
,
Chi Zhang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.00170
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.00170
This technical report presents an effective method for motion prediction in autonomous driving. We develop a Transformer-based method for input encoding and trajectory prediction. Besides, we propose the Temporal Flow Header to enhance the trajectory encoding. In the end, an efficient K-means ensemble method is used. Using our Transformer network and ensemble method, we win the first place of Argoverse 2 Motion Forecasting Challenge with the state-of-the-art brier-minFDE score of 1.90.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.00170
- https://arxiv.org/pdf/2207.00170
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283813727
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283813727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.00170Digital Object Identifier
- Title
-
TENET: Transformer Encoding Network for Effective Temporal Flow on Motion PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-30Full publication date if available
- Authors
-
Yuting Wang, Hangning Zhou, Zhigang Zhang, Feng Chen, Huadong Lin, Chaofei Gao, Yizhi Tang, Zhenting Zhao, Shiyu Zhang, Jie Guo, Xuefeng Wang, Ziyao Xu, Chi ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.00170Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.00170Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.00170Direct OA link when available
- Concepts
-
Computer science, Header, Transformer, Encoding (memory), Traverse, Trajectory, Artificial intelligence, Engineering, Voltage, Electrical engineering, Geography, Geodesy, Computer network, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283813727 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.00170 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.00170 |
| ids.openalex | https://openalex.org/W4283813727 |
| fwci | |
| type | preprint |
| title | TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.70949387550354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48105269 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7042493224143982 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1141160 |
| concepts[1].display_name | Header |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7002854347229004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C125411270 |
| concepts[3].level | 2 |
| concepts[3].score | 0.629014253616333 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[3].display_name | Encoding (memory) |
| concepts[4].id | https://openalex.org/C176809094 |
| concepts[4].level | 2 |
| concepts[4].score | 0.619493305683136 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q15401496 |
| concepts[4].display_name | Traverse |
| concepts[5].id | https://openalex.org/C13662910 |
| concepts[5].level | 2 |
| concepts[5].score | 0.501354455947876 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[5].display_name | Trajectory |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49458858370780945 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.156101256608963 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.07895350456237793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| concepts[9].id | https://openalex.org/C119599485 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[9].display_name | Electrical engineering |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C1276947 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[14].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.70949387550354 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/header |
| keywords[1].score | 0.7042493224143982 |
| keywords[1].display_name | Header |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.7002854347229004 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/encoding |
| keywords[3].score | 0.629014253616333 |
| keywords[3].display_name | Encoding (memory) |
| keywords[4].id | https://openalex.org/keywords/traverse |
| keywords[4].score | 0.619493305683136 |
| keywords[4].display_name | Traverse |
| keywords[5].id | https://openalex.org/keywords/trajectory |
| keywords[5].score | 0.501354455947876 |
| keywords[5].display_name | Trajectory |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.49458858370780945 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.156101256608963 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/voltage |
| keywords[8].score | 0.07895350456237793 |
| keywords[8].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.00170 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.00170 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.00170 |
| locations[1].id | doi:10.48550/arxiv.2207.00170 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.00170 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100384201 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1562-2764 |
| authorships[0].author.display_name | Yuting Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yuting |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009482239 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-8894-3137 |
| authorships[1].author.display_name | Hangning Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Hangning |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100374007 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-1093-1855 |
| authorships[2].author.display_name | Zhigang Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Zhigang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100352693 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2139-7815 |
| authorships[3].author.display_name | Feng Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng, Chen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5000220930 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-9773-2263 |
| authorships[4].author.display_name | Huadong Lin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lin, Huadong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5011331791 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9907-0495 |
| authorships[5].author.display_name | Chaofei Gao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gao, Chaofei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5031831726 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0805-7020 |
| authorships[6].author.display_name | Yizhi Tang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tang, Yizhi |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5017864612 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2082-777X |
| authorships[7].author.display_name | Zhenting Zhao |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhao, Zhenting |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100409626 |
| authorships[8].author.orcid | https://orcid.org/0009-0008-5766-6061 |
| authorships[8].author.display_name | Shiyu Zhang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhang, Shiyu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100756161 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5584-5292 |
| authorships[9].author.display_name | Jie Guo |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Guo, Jie |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100451953 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-3472-7895 |
| authorships[10].author.display_name | Xuefeng Wang |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Wang, Xuefeng |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5101654330 |
| authorships[11].author.orcid | https://orcid.org/0009-0005-8222-8379 |
| authorships[11].author.display_name | Ziyao Xu |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Xu, Ziyao |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5100458129 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-6152-9387 |
| authorships[12].author.display_name | Chi Zhang |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Zhang, Chi |
| authorships[12].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.00170 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-06T00:00:00 |
| display_name | TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W2377402383, https://openalex.org/W2380835401, https://openalex.org/W2381912691, https://openalex.org/W2350381577, https://openalex.org/W2353618196, https://openalex.org/W2348074676, https://openalex.org/W2385033175, https://openalex.org/W2374043190, https://openalex.org/W2363298784, https://openalex.org/W2367402697 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.00170 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.00170 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.00170 |
| primary_location.id | pmh:oai:arXiv.org:2207.00170 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.00170 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.00170 |
| publication_date | 2022-06-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 60 |
| abstract_inverted_index.a | 15 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.We | 13 |
| abstract_inverted_index.an | 4, 39 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 44 |
| abstract_inverted_index.of | 58, 69 |
| abstract_inverted_index.to | 31 |
| abstract_inverted_index.we | 25, 53 |
| abstract_inverted_index.and | 21, 50 |
| abstract_inverted_index.for | 7, 18 |
| abstract_inverted_index.our | 47 |
| abstract_inverted_index.the | 27, 33, 37, 55, 65 |
| abstract_inverted_index.win | 54 |
| abstract_inverted_index.Flow | 29 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.end, | 38 |
| abstract_inverted_index.with | 64 |
| abstract_inverted_index.1.90. | 70 |
| abstract_inverted_index.Using | 46 |
| abstract_inverted_index.first | 56 |
| abstract_inverted_index.input | 19 |
| abstract_inverted_index.place | 57 |
| abstract_inverted_index.score | 68 |
| abstract_inverted_index.used. | 45 |
| abstract_inverted_index.Header | 30 |
| abstract_inverted_index.Motion | 61 |
| abstract_inverted_index.method | 6, 17, 43 |
| abstract_inverted_index.motion | 8 |
| abstract_inverted_index.report | 2 |
| abstract_inverted_index.K-means | 41 |
| abstract_inverted_index.develop | 14 |
| abstract_inverted_index.enhance | 32 |
| abstract_inverted_index.method, | 52 |
| abstract_inverted_index.network | 49 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.Besides, | 24 |
| abstract_inverted_index.Temporal | 28 |
| abstract_inverted_index.driving. | 12 |
| abstract_inverted_index.encoding | 20 |
| abstract_inverted_index.ensemble | 42, 51 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.Argoverse | 59 |
| abstract_inverted_index.Challenge | 63 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.efficient | 40 |
| abstract_inverted_index.encoding. | 35 |
| abstract_inverted_index.technical | 1 |
| abstract_inverted_index.autonomous | 11 |
| abstract_inverted_index.prediction | 9 |
| abstract_inverted_index.trajectory | 22, 34 |
| abstract_inverted_index.Forecasting | 62 |
| abstract_inverted_index.Transformer | 48 |
| abstract_inverted_index.prediction. | 23 |
| abstract_inverted_index.brier-minFDE | 67 |
| abstract_inverted_index.state-of-the-art | 66 |
| abstract_inverted_index.Transformer-based | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| citation_normalized_percentile |