Tensor-Based Unsupervised Multi-View Feature Selection for Image Recognition Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icme51207.2021.9428428
In image analysis, image samples from multiple sources may contain noisy features. Due to the difficulty of obtaining label information and complex intrinsic structures, performing unsupervised feature selection on multi-view data is a challenging problem. Most existing unsupervised multi-view feature selection methods may explore only the inter-view correlations at the view-level, and ignore the explicit correlations between features across multiple views. In this paper, we propose a tensor-based unsupervised multi-view feature selection (TUFS) method. Specifically, TUFS efficiently explores the full-order interactions among multi-view data without physically building a tensor. Besides, multiple local geometric structures for different views are constructed to facilitate unsupervised feature selection. To solve the proposed model, we design an alternating optimization algorithm. Experiments and comparisons on three image datasets demonstrate that the proposed TUFS yields better performance over the state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icme51207.2021.9428428
- OA Status
- gold
- Cited By
- 8
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3168790186
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3168790186Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icme51207.2021.9428428Digital Object Identifier
- Title
-
Tensor-Based Unsupervised Multi-View Feature Selection for Image RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-09Full publication date if available
- Authors
-
Yongshan Zhang, Xinxin Wang, Zhihua Cai, Yicong Zhou, Philip S. YuList of authors in order
- Landing page
-
https://doi.org/10.1109/icme51207.2021.9428428Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/icme51207.2021.9428428Direct OA link when available
- Concepts
-
Computer science, Feature selection, Artificial intelligence, Pattern recognition (psychology), Tensor (intrinsic definition), Selection (genetic algorithm), Feature (linguistics), Image (mathematics), Feature extraction, Unsupervised learning, Machine learning, Data mining, Mathematics, Linguistics, Pure mathematics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3168790186 |
|---|---|
| doi | https://doi.org/10.1109/icme51207.2021.9428428 |
| ids.doi | https://doi.org/10.1109/icme51207.2021.9428428 |
| ids.mag | 3168790186 |
| ids.openalex | https://openalex.org/W3168790186 |
| fwci | 0.50409622 |
| type | article |
| title | Tensor-Based Unsupervised Multi-View Feature Selection for Image Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9581000208854675 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11269 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9541000127792358 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Algorithms and Data Compression |
| funders[0].id | https://openalex.org/F4320321655 |
| funders[0].ror | https://ror.org/044vr6g03 |
| funders[0].display_name | Science and Technology Development Fund |
| funders[1].id | https://openalex.org/F4320322186 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hubei Province |
| funders[2].id | https://openalex.org/F4320328899 |
| funders[2].ror | |
| funders[2].display_name | China University of Geosciences |
| funders[3].id | https://openalex.org/F4320335787 |
| funders[3].ror | |
| funders[3].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7044895887374878 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6876699328422546 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6703265309333801 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6579840779304504 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C155281189 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5929722785949707 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[4].display_name | Tensor (intrinsic definition) |
| concepts[5].id | https://openalex.org/C81917197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5612655282020569 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[5].display_name | Selection (genetic algorithm) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.556152880191803 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5459741950035095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C52622490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4882667064666748 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[8].display_name | Feature extraction |
| concepts[9].id | https://openalex.org/C8038995 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4575239419937134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[9].display_name | Unsupervised learning |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3473656475543976 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3273005485534668 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20266902446746826 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7044895887374878 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6876699328422546 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6703265309333801 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6579840779304504 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/tensor |
| keywords[4].score | 0.5929722785949707 |
| keywords[4].display_name | Tensor (intrinsic definition) |
| keywords[5].id | https://openalex.org/keywords/selection |
| keywords[5].score | 0.5612655282020569 |
| keywords[5].display_name | Selection (genetic algorithm) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.556152880191803 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.5459741950035095 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/feature-extraction |
| keywords[8].score | 0.4882667064666748 |
| keywords[8].display_name | Feature extraction |
| keywords[9].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[9].score | 0.4575239419937134 |
| keywords[9].display_name | Unsupervised learning |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3473656475543976 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3273005485534668 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.20266902446746826 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/icme51207.2021.9428428 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE International Conference on Multimedia and Expo (ICME) |
| locations[0].landing_page_url | https://doi.org/10.1109/icme51207.2021.9428428 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038549098 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5817-1732 |
| authorships[0].author.display_name | Yongshan Zhang |
| authorships[0].countries | CN, MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3124059619 |
| authorships[0].affiliations[0].raw_affiliation_string | China University of Geosciences,School of Computer Science,Wuhan,China,430074 |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I204512498 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Macau, China |
| authorships[0].institutions[0].id | https://openalex.org/I3124059619 |
| authorships[0].institutions[0].ror | https://ror.org/04gcegc37 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3124059619 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Geosciences |
| authorships[0].institutions[1].id | https://openalex.org/I204512498 |
| authorships[0].institutions[1].ror | https://ror.org/01r4q9n85 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I204512498 |
| authorships[0].institutions[1].country_code | MO |
| authorships[0].institutions[1].display_name | University of Macau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongshan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | China University of Geosciences,School of Computer Science,Wuhan,China,430074, Department of Computer and Information Science, University of Macau, Macau, China |
| authorships[1].author.id | https://openalex.org/A5100406825 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8013-3660 |
| authorships[1].author.display_name | Xinxin Wang |
| authorships[1].countries | CN, MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3124059619 |
| authorships[1].affiliations[0].raw_affiliation_string | China University of Geosciences,School of Computer Science,Wuhan,China,430074 |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I204512498 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Macau, China |
| authorships[1].institutions[0].id | https://openalex.org/I3124059619 |
| authorships[1].institutions[0].ror | https://ror.org/04gcegc37 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3124059619 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Geosciences |
| authorships[1].institutions[1].id | https://openalex.org/I204512498 |
| authorships[1].institutions[1].ror | https://ror.org/01r4q9n85 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I204512498 |
| authorships[1].institutions[1].country_code | MO |
| authorships[1].institutions[1].display_name | University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinxin Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China University of Geosciences,School of Computer Science,Wuhan,China,430074, Department of Computer and Information Science, University of Macau, Macau, China |
| authorships[2].author.id | https://openalex.org/A5038861185 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0020-6503 |
| authorships[2].author.display_name | Zhihua Cai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3124059619 |
| authorships[2].affiliations[0].raw_affiliation_string | China University of Geosciences,School of Computer Science,Wuhan,China,430074 |
| authorships[2].institutions[0].id | https://openalex.org/I3124059619 |
| authorships[2].institutions[0].ror | https://ror.org/04gcegc37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3124059619 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Geosciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhihua Cai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | China University of Geosciences,School of Computer Science,Wuhan,China,430074 |
| authorships[3].author.id | https://openalex.org/A5009595085 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4487-6384 |
| authorships[3].author.display_name | Yicong Zhou |
| authorships[3].countries | MO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Macau,Department of Computer and Information Science,Macau,China,999078 |
| authorships[3].institutions[0].id | https://openalex.org/I204512498 |
| authorships[3].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[3].institutions[0].country_code | MO |
| authorships[3].institutions[0].display_name | University of Macau |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yicong Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Macau,Department of Computer and Information Science,Macau,China,999078 |
| authorships[4].author.id | https://openalex.org/A5036357902 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3491-5968 |
| authorships[4].author.display_name | Philip S. Yu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Illinois,Department of Computer Science,Chicago,IL,USA,60607 |
| authorships[4].institutions[0].id | https://openalex.org/I39422238 |
| authorships[4].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Illinois Chicago |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Philip S. Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Illinois,Department of Computer Science,Chicago,IL,USA,60607 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/icme51207.2021.9428428 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tensor-Based Unsupervised Multi-View Feature Selection for Image Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W3147584709, https://openalex.org/W2977677679, https://openalex.org/W2380784125, https://openalex.org/W1992327129, https://openalex.org/W2381986121, https://openalex.org/W3004057759, https://openalex.org/W2370918718, https://openalex.org/W2889085215, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1109/icme51207.2021.9428428 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2021 IEEE International Conference on Multimedia and Expo (ICME) |
| best_oa_location.landing_page_url | https://doi.org/10.1109/icme51207.2021.9428428 |
| primary_location.id | doi:10.1109/icme51207.2021.9428428 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE International Conference on Multimedia and Expo (ICME) |
| primary_location.landing_page_url | https://doi.org/10.1109/icme51207.2021.9428428 |
| publication_date | 2021-06-09 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2024165284, https://openalex.org/W2753823607, https://openalex.org/W2084376194, https://openalex.org/W2583200575, https://openalex.org/W3000675402, https://openalex.org/W2896042878, https://openalex.org/W6731811539, https://openalex.org/W2979744929, https://openalex.org/W6735994599, https://openalex.org/W2128873747, https://openalex.org/W6681822384, https://openalex.org/W2904125861, https://openalex.org/W2583916359, https://openalex.org/W2407812036, https://openalex.org/W2946807672, https://openalex.org/W1937059634, https://openalex.org/W6773235835, https://openalex.org/W2604723872, https://openalex.org/W2579597427, https://openalex.org/W3004244740, https://openalex.org/W2149620660 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 32, 66, 87 |
| abstract_inverted_index.In | 0, 61 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.at | 48 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.of | 16 |
| abstract_inverted_index.on | 28, 118 |
| abstract_inverted_index.to | 13, 99 |
| abstract_inverted_index.we | 64, 109 |
| abstract_inverted_index.Due | 12 |
| abstract_inverted_index.and | 20, 51, 116 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.for | 94 |
| abstract_inverted_index.may | 8, 42 |
| abstract_inverted_index.the | 14, 45, 49, 53, 78, 106, 124, 131 |
| abstract_inverted_index.Most | 35 |
| abstract_inverted_index.TUFS | 75, 126 |
| abstract_inverted_index.data | 30, 83 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.over | 130 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.among | 81 |
| abstract_inverted_index.image | 1, 3, 120 |
| abstract_inverted_index.label | 18 |
| abstract_inverted_index.local | 91 |
| abstract_inverted_index.noisy | 10 |
| abstract_inverted_index.solve | 105 |
| abstract_inverted_index.three | 119 |
| abstract_inverted_index.views | 96 |
| abstract_inverted_index.(TUFS) | 72 |
| abstract_inverted_index.across | 58 |
| abstract_inverted_index.better | 128 |
| abstract_inverted_index.design | 110 |
| abstract_inverted_index.ignore | 52 |
| abstract_inverted_index.model, | 108 |
| abstract_inverted_index.paper, | 63 |
| abstract_inverted_index.views. | 60 |
| abstract_inverted_index.yields | 127 |
| abstract_inverted_index.between | 56 |
| abstract_inverted_index.complex | 21 |
| abstract_inverted_index.contain | 9 |
| abstract_inverted_index.explore | 43 |
| abstract_inverted_index.feature | 26, 39, 70, 102 |
| abstract_inverted_index.method. | 73 |
| abstract_inverted_index.methods | 41 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.samples | 4 |
| abstract_inverted_index.sources | 7 |
| abstract_inverted_index.tensor. | 88 |
| abstract_inverted_index.without | 84 |
| abstract_inverted_index.Besides, | 89 |
| abstract_inverted_index.building | 86 |
| abstract_inverted_index.datasets | 121 |
| abstract_inverted_index.existing | 36 |
| abstract_inverted_index.explicit | 54 |
| abstract_inverted_index.explores | 77 |
| abstract_inverted_index.features | 57 |
| abstract_inverted_index.methods. | 133 |
| abstract_inverted_index.multiple | 6, 59, 90 |
| abstract_inverted_index.problem. | 34 |
| abstract_inverted_index.proposed | 107, 125 |
| abstract_inverted_index.analysis, | 2 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.features. | 11 |
| abstract_inverted_index.geometric | 92 |
| abstract_inverted_index.intrinsic | 22 |
| abstract_inverted_index.obtaining | 17 |
| abstract_inverted_index.selection | 27, 40, 71 |
| abstract_inverted_index.algorithm. | 114 |
| abstract_inverted_index.difficulty | 15 |
| abstract_inverted_index.facilitate | 100 |
| abstract_inverted_index.full-order | 79 |
| abstract_inverted_index.inter-view | 46 |
| abstract_inverted_index.multi-view | 29, 38, 69, 82 |
| abstract_inverted_index.performing | 24 |
| abstract_inverted_index.physically | 85 |
| abstract_inverted_index.selection. | 103 |
| abstract_inverted_index.structures | 93 |
| abstract_inverted_index.Experiments | 115 |
| abstract_inverted_index.alternating | 112 |
| abstract_inverted_index.challenging | 33 |
| abstract_inverted_index.comparisons | 117 |
| abstract_inverted_index.constructed | 98 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.efficiently | 76 |
| abstract_inverted_index.information | 19 |
| abstract_inverted_index.performance | 129 |
| abstract_inverted_index.structures, | 23 |
| abstract_inverted_index.view-level, | 50 |
| abstract_inverted_index.correlations | 47, 55 |
| abstract_inverted_index.interactions | 80 |
| abstract_inverted_index.optimization | 113 |
| abstract_inverted_index.tensor-based | 67 |
| abstract_inverted_index.unsupervised | 25, 37, 68, 101 |
| abstract_inverted_index.Specifically, | 74 |
| abstract_inverted_index.state-of-the-art | 132 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.59758772 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |