Tensor Matched Kronecker-Structured Subspace Detection for Missing\n Information Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1810.10957
We consider the problem of detecting whether a tensor signal having many\nmissing entities lies within a given low dimensional Kronecker-Structured (KS)\nsubspace. This is a matched subspace detection problem. Tensor matched subspace\ndetection problem is more challenging because of the intertwined signal\ndimensions. We solve this problem by projecting the signal onto the Kronecker\nstructured subspace, which is a Kronecker product of different subspaces\ncorresponding to each signal dimension. Under this framework, we define the KS\nsubspaces and the orthogonal projection of the signal onto the KS subspace. We\nprove that reliable detection is possible as long as the cardinality of the\nmissing signal is greater than the dimensions of the KS subspace by bounding\nthe residual energy of the sampling signal with high probability.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1810.10957
- https://arxiv.org/pdf/1810.10957
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4289364798
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4289364798Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1810.10957Digital Object Identifier
- Title
-
Tensor Matched Kronecker-Structured Subspace Detection for Missing\n InformationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-10-25Full publication date if available
- Authors
-
Ishan Jindal, Matthew NoklebyList of authors in order
- Landing page
-
https://arxiv.org/abs/1810.10957Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1810.10957Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1810.10957Direct OA link when available
- Concepts
-
Linear subspace, Kronecker delta, Subspace topology, Signal subspace, Projection (relational algebra), Mathematics, Tensor (intrinsic definition), Kronecker product, SIGNAL (programming language), Cardinality (data modeling), Dimension (graph theory), Algorithm, Pattern recognition (psychology), Computer science, Combinatorics, Artificial intelligence, Pure mathematics, Mathematical analysis, Data mining, Noise (video), Physics, Programming language, Image (mathematics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4289364798 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1810.10957 |
| ids.openalex | https://openalex.org/W4289364798 |
| fwci | 0.0 |
| type | preprint |
| title | Tensor Matched Kronecker-Structured Subspace Detection for Missing\n Information |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| topics[1].id | https://openalex.org/T10575 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Wireless Communication Networks Research |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9348999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12362212 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8264185190200806 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q728435 |
| concepts[0].display_name | Linear subspace |
| concepts[1].id | https://openalex.org/C39482219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7930837273597717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192826 |
| concepts[1].display_name | Kronecker delta |
| concepts[2].id | https://openalex.org/C32834561 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7846249341964722 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[2].display_name | Subspace topology |
| concepts[3].id | https://openalex.org/C2777121530 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6896073818206787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7512739 |
| concepts[3].display_name | Signal subspace |
| concepts[4].id | https://openalex.org/C57493831 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5640084147453308 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[4].display_name | Projection (relational algebra) |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5532745122909546 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C155281189 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5164077877998352 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[6].display_name | Tensor (intrinsic definition) |
| concepts[7].id | https://openalex.org/C46030957 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4919550120830536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1238125 |
| concepts[7].display_name | Kronecker product |
| concepts[8].id | https://openalex.org/C2779843651 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49008190631866455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[8].display_name | SIGNAL (programming language) |
| concepts[9].id | https://openalex.org/C87117476 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4707896113395691 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q362383 |
| concepts[9].display_name | Cardinality (data modeling) |
| concepts[10].id | https://openalex.org/C33676613 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42363640666007996 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[10].display_name | Dimension (graph theory) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.42331066727638245 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.34868261218070984 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.33081167936325073 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.29865795373916626 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.25005143880844116 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.17970746755599976 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.15796023607254028 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C124101348 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10433009266853333 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[18].display_name | Data mining |
| concepts[19].id | https://openalex.org/C99498987 |
| concepts[19].level | 3 |
| concepts[19].score | 0.09889444708824158 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[19].display_name | Noise (video) |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.08038422465324402 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C115961682 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[22].display_name | Image (mathematics) |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/linear-subspace |
| keywords[0].score | 0.8264185190200806 |
| keywords[0].display_name | Linear subspace |
| keywords[1].id | https://openalex.org/keywords/kronecker-delta |
| keywords[1].score | 0.7930837273597717 |
| keywords[1].display_name | Kronecker delta |
| keywords[2].id | https://openalex.org/keywords/subspace-topology |
| keywords[2].score | 0.7846249341964722 |
| keywords[2].display_name | Subspace topology |
| keywords[3].id | https://openalex.org/keywords/signal-subspace |
| keywords[3].score | 0.6896073818206787 |
| keywords[3].display_name | Signal subspace |
| keywords[4].id | https://openalex.org/keywords/projection |
| keywords[4].score | 0.5640084147453308 |
| keywords[4].display_name | Projection (relational algebra) |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.5532745122909546 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/tensor |
| keywords[6].score | 0.5164077877998352 |
| keywords[6].display_name | Tensor (intrinsic definition) |
| keywords[7].id | https://openalex.org/keywords/kronecker-product |
| keywords[7].score | 0.4919550120830536 |
| keywords[7].display_name | Kronecker product |
| keywords[8].id | https://openalex.org/keywords/signal |
| keywords[8].score | 0.49008190631866455 |
| keywords[8].display_name | SIGNAL (programming language) |
| keywords[9].id | https://openalex.org/keywords/cardinality |
| keywords[9].score | 0.4707896113395691 |
| keywords[9].display_name | Cardinality (data modeling) |
| keywords[10].id | https://openalex.org/keywords/dimension |
| keywords[10].score | 0.42363640666007996 |
| keywords[10].display_name | Dimension (graph theory) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.42331066727638245 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.34868261218070984 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.33081167936325073 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.29865795373916626 |
| keywords[14].display_name | Combinatorics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.25005143880844116 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/pure-mathematics |
| keywords[16].score | 0.17970746755599976 |
| keywords[16].display_name | Pure mathematics |
| keywords[17].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[17].score | 0.15796023607254028 |
| keywords[17].display_name | Mathematical analysis |
| keywords[18].id | https://openalex.org/keywords/data-mining |
| keywords[18].score | 0.10433009266853333 |
| keywords[18].display_name | Data mining |
| keywords[19].id | https://openalex.org/keywords/noise |
| keywords[19].score | 0.09889444708824158 |
| keywords[19].display_name | Noise (video) |
| keywords[20].id | https://openalex.org/keywords/physics |
| keywords[20].score | 0.08038422465324402 |
| keywords[20].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1810.10957 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/1810.10957 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1810.10957 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5077046363 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8854-4189 |
| authorships[0].author.display_name | Ishan Jindal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jindal, Ishan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068254472 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3454-4212 |
| authorships[1].author.display_name | Matthew Nokleby |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nokleby, Matthew |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1810.10957 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tensor Matched Kronecker-Structured Subspace Detection for Missing\n Information |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W123417539, https://openalex.org/W4233239985, https://openalex.org/W2079407403, https://openalex.org/W2060299328, https://openalex.org/W2117336295, https://openalex.org/W2073634779, https://openalex.org/W3102722572, https://openalex.org/W2090103374, https://openalex.org/W1564288589, https://openalex.org/W577870507 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1810.10957 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1810.10957 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1810.10957 |
| primary_location.id | pmh:oai:arXiv.org:1810.10957 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/1810.10957 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1810.10957 |
| publication_date | 2018-10-25 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 15, 23, 54 |
| abstract_inverted_index.KS | 80, 103 |
| abstract_inverted_index.We | 0, 40 |
| abstract_inverted_index.as | 88, 90 |
| abstract_inverted_index.by | 44, 105 |
| abstract_inverted_index.is | 22, 32, 53, 86, 96 |
| abstract_inverted_index.of | 4, 36, 57, 75, 93, 101, 109 |
| abstract_inverted_index.to | 60 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.and | 71 |
| abstract_inverted_index.low | 17 |
| abstract_inverted_index.the | 2, 37, 46, 49, 69, 72, 76, 79, 91, 99, 102, 110 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.each | 61 |
| abstract_inverted_index.high | 114 |
| abstract_inverted_index.lies | 13 |
| abstract_inverted_index.long | 89 |
| abstract_inverted_index.more | 33 |
| abstract_inverted_index.onto | 48, 78 |
| abstract_inverted_index.than | 98 |
| abstract_inverted_index.that | 83 |
| abstract_inverted_index.this | 42, 65 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.Under | 64 |
| abstract_inverted_index.given | 16 |
| abstract_inverted_index.solve | 41 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.Tensor | 28 |
| abstract_inverted_index.define | 68 |
| abstract_inverted_index.energy | 108 |
| abstract_inverted_index.having | 10 |
| abstract_inverted_index.signal | 9, 47, 62, 77, 95, 112 |
| abstract_inverted_index.tensor | 8 |
| abstract_inverted_index.within | 14 |
| abstract_inverted_index.because | 35 |
| abstract_inverted_index.greater | 97 |
| abstract_inverted_index.matched | 24, 29 |
| abstract_inverted_index.problem | 3, 31, 43 |
| abstract_inverted_index.product | 56 |
| abstract_inverted_index.whether | 6 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.entities | 12 |
| abstract_inverted_index.possible | 87 |
| abstract_inverted_index.problem. | 27 |
| abstract_inverted_index.reliable | 84 |
| abstract_inverted_index.residual | 107 |
| abstract_inverted_index.sampling | 111 |
| abstract_inverted_index.subspace | 25, 104 |
| abstract_inverted_index.Kronecker | 55 |
| abstract_inverted_index.We\nprove | 82 |
| abstract_inverted_index.detecting | 5 |
| abstract_inverted_index.detection | 26, 85 |
| abstract_inverted_index.different | 58 |
| abstract_inverted_index.subspace, | 51 |
| abstract_inverted_index.subspace. | 81 |
| abstract_inverted_index.dimension. | 63 |
| abstract_inverted_index.dimensions | 100 |
| abstract_inverted_index.framework, | 66 |
| abstract_inverted_index.orthogonal | 73 |
| abstract_inverted_index.projecting | 45 |
| abstract_inverted_index.projection | 74 |
| abstract_inverted_index.cardinality | 92 |
| abstract_inverted_index.challenging | 34 |
| abstract_inverted_index.dimensional | 18 |
| abstract_inverted_index.intertwined | 38 |
| abstract_inverted_index.the\nmissing | 94 |
| abstract_inverted_index.KS\nsubspaces | 70 |
| abstract_inverted_index.bounding\nthe | 106 |
| abstract_inverted_index.many\nmissing | 11 |
| abstract_inverted_index.probability.\n | 115 |
| abstract_inverted_index.(KS)\nsubspace. | 20 |
| abstract_inverted_index.signal\ndimensions. | 39 |
| abstract_inverted_index.subspace\ndetection | 30 |
| abstract_inverted_index.Kronecker-Structured | 19 |
| abstract_inverted_index.Kronecker\nstructured | 50 |
| abstract_inverted_index.subspaces\ncorresponding | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.17691343 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |