Tensor network approximation of Koopman operators Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.07242
We propose a tensor network framework for approximating the evolution of observables of measure-preserving ergodic systems. Our approach is based on a spectrally-convergent approximation of the skew-adjoint Koopman generator by a diagonalizable, skew-adjoint operator $W_τ$ that acts on a reproducing kernel Hilbert space $\mathcal H_τ$ with coalgebra structure and Banach algebra structure under the pointwise product of functions. Leveraging this structure, we lift the unitary evolution operators $e^{t W_τ}$ (which can be thought of as regularized Koopman operators) to a unitary evolution group on the Fock space $F(\mathcal H_τ)$ generated by $\mathcal H_τ$ that acts multiplicatively with respect to the tensor product. Our scheme also employs a representation of classical observables ($L^\infty$ functions of the state) by quantum observables (self-adjoint operators) acting on the Fock space, and a representation of probability densities in $L^1$ by quantum states. Combining these constructions leads to an approximation of the Koopman evolution of observables that is representable as evaluation of a tree tensor network built on a tensor product subspace $\mathcal H_τ^{\otimes n} \subset F(\mathcal H_τ)$ of arbitrarily high grading $n \in \mathbb N$. A key feature of this quantum-inspired approximation is that it captures information from a tensor product space of dimension $(2d+1)^n$, generated from a collection of $2d + 1$ eigenfunctions of $W_τ$. Furthermore, the approximation is positivity preserving. The paper contains a theoretical convergence analysis of the method and numerical applications to two dynamical systems on the 2-torus: an ergodic torus rotation as an example with pure point Koopman spectrum and a Stepanoff flow as an example with topological weak mixing.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.07242
- https://arxiv.org/pdf/2407.07242
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400600694
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400600694Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.07242Digital Object Identifier
- Title
-
Tensor network approximation of Koopman operatorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-09Full publication date if available
- Authors
-
Dimitrios Giannakis, Mohammad Javad Latifi Jebelli, Michael Montgomery, Philipp Pfeffer, Jörg Schumacher, Joanna SławińskaList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.07242Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.07242Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.07242Direct OA link when available
- Concepts
-
Tensor (intrinsic definition), Mathematics, Computer science, Algebra over a field, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400600694 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.07242 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.07242 |
| ids.openalex | https://openalex.org/W4400600694 |
| fwci | |
| type | preprint |
| title | Tensor network approximation of Koopman operators |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9850999712944031 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T12303 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.968999981880188 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2605 |
| topics[1].subfield.display_name | Computational Mathematics |
| topics[1].display_name | Tensor decomposition and applications |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9617999792098999 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155281189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6747507452964783 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[0].display_name | Tensor (intrinsic definition) |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4408169090747833 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37516844272613525 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C136119220 |
| concepts[3].level | 2 |
| concepts[3].score | 0.36422616243362427 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[3].display_name | Algebra over a field |
| concepts[4].id | https://openalex.org/C202444582 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32278546690940857 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[4].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/tensor |
| keywords[0].score | 0.6747507452964783 |
| keywords[0].display_name | Tensor (intrinsic definition) |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.4408169090747833 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.37516844272613525 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[3].score | 0.36422616243362427 |
| keywords[3].display_name | Algebra over a field |
| keywords[4].id | https://openalex.org/keywords/pure-mathematics |
| keywords[4].score | 0.32278546690940857 |
| keywords[4].display_name | Pure mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.07242 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.07242 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.07242 |
| locations[1].id | doi:10.48550/arxiv.2407.07242 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.07242 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076538541 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4220-0313 |
| authorships[0].author.display_name | Dimitrios Giannakis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Giannakis, Dimitrios |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033797478 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0088-266X |
| authorships[1].author.display_name | Mohammad Javad Latifi Jebelli |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jebelli, Mohammad Javad Latifi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080254642 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7389-5007 |
| authorships[2].author.display_name | Michael Montgomery |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Montgomery, Michael |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015882134 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8503-774X |
| authorships[3].author.display_name | Philipp Pfeffer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pfeffer, Philipp |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008993197 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1359-4536 |
| authorships[4].author.display_name | Jörg Schumacher |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Schumacher, Jörg |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5065096577 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3099-5136 |
| authorships[5].author.display_name | Joanna Sławińska |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Slawinska, Joanna |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.07242 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tensor network approximation of Koopman operators |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9850999712944031 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.07242 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.07242 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.07242 |
| primary_location.id | pmh:oai:arXiv.org:2407.07242 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.07242 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.07242 |
| publication_date | 2024-07-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 206 |
| abstract_inverted_index.A | 180 |
| abstract_inverted_index.a | 2, 21, 30, 38, 79, 106, 127, 156, 162, 193, 202, 220, 250 |
| abstract_inverted_index.$n | 176 |
| abstract_inverted_index.1$ | 207 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 142, 237, 242, 254 |
| abstract_inverted_index.as | 74, 153, 241, 253 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.by | 29, 90, 116, 134 |
| abstract_inverted_index.in | 132 |
| abstract_inverted_index.is | 18, 151, 187, 214 |
| abstract_inverted_index.it | 189 |
| abstract_inverted_index.n} | 168 |
| abstract_inverted_index.of | 10, 12, 24, 56, 73, 108, 113, 129, 144, 148, 155, 172, 183, 197, 204, 209, 224 |
| abstract_inverted_index.on | 20, 37, 83, 122, 161, 234 |
| abstract_inverted_index.to | 78, 98, 141, 230 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.$2d | 205 |
| abstract_inverted_index.N$. | 179 |
| abstract_inverted_index.Our | 16, 102 |
| abstract_inverted_index.The | 217 |
| abstract_inverted_index.\in | 177 |
| abstract_inverted_index.and | 48, 126, 227, 249 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.key | 181 |
| abstract_inverted_index.the | 8, 25, 53, 63, 84, 99, 114, 123, 145, 212, 225, 235 |
| abstract_inverted_index.two | 231 |
| abstract_inverted_index.Fock | 85, 124 |
| abstract_inverted_index.acts | 36, 94 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.flow | 252 |
| abstract_inverted_index.from | 192, 201 |
| abstract_inverted_index.high | 174 |
| abstract_inverted_index.lift | 62 |
| abstract_inverted_index.pure | 245 |
| abstract_inverted_index.that | 35, 93, 150, 188 |
| abstract_inverted_index.this | 59, 184 |
| abstract_inverted_index.tree | 157 |
| abstract_inverted_index.weak | 258 |
| abstract_inverted_index.with | 45, 96, 244, 256 |
| abstract_inverted_index.$L^1$ | 133 |
| abstract_inverted_index.$e^{t | 67 |
| abstract_inverted_index.H_τ$ | 44, 92 |
| abstract_inverted_index.based | 19 |
| abstract_inverted_index.built | 160 |
| abstract_inverted_index.group | 82 |
| abstract_inverted_index.leads | 140 |
| abstract_inverted_index.paper | 218 |
| abstract_inverted_index.point | 246 |
| abstract_inverted_index.space | 42, 86, 196 |
| abstract_inverted_index.these | 138 |
| abstract_inverted_index.torus | 239 |
| abstract_inverted_index.under | 52 |
| abstract_inverted_index.$W_τ$ | 34 |
| abstract_inverted_index.(which | 69 |
| abstract_inverted_index.Banach | 49 |
| abstract_inverted_index.H_τ)$ | 88, 171 |
| abstract_inverted_index.W_τ}$ | 68 |
| abstract_inverted_index.acting | 121 |
| abstract_inverted_index.kernel | 40 |
| abstract_inverted_index.method | 226 |
| abstract_inverted_index.scheme | 103 |
| abstract_inverted_index.space, | 125 |
| abstract_inverted_index.state) | 115 |
| abstract_inverted_index.tensor | 3, 100, 158, 163, 194 |
| abstract_inverted_index.$W_τ$. | 210 |
| abstract_inverted_index.Hilbert | 41 |
| abstract_inverted_index.Koopman | 27, 76, 146, 247 |
| abstract_inverted_index.\mathbb | 178 |
| abstract_inverted_index.\subset | 169 |
| abstract_inverted_index.algebra | 50 |
| abstract_inverted_index.employs | 105 |
| abstract_inverted_index.ergodic | 14, 238 |
| abstract_inverted_index.example | 243, 255 |
| abstract_inverted_index.feature | 182 |
| abstract_inverted_index.grading | 175 |
| abstract_inverted_index.mixing. | 259 |
| abstract_inverted_index.network | 4, 159 |
| abstract_inverted_index.product | 55, 164, 195 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.quantum | 117, 135 |
| abstract_inverted_index.respect | 97 |
| abstract_inverted_index.states. | 136 |
| abstract_inverted_index.systems | 233 |
| abstract_inverted_index.thought | 72 |
| abstract_inverted_index.unitary | 64, 80 |
| abstract_inverted_index.2-torus: | 236 |
| abstract_inverted_index.analysis | 223 |
| abstract_inverted_index.approach | 17 |
| abstract_inverted_index.captures | 190 |
| abstract_inverted_index.contains | 219 |
| abstract_inverted_index.operator | 33 |
| abstract_inverted_index.product. | 101 |
| abstract_inverted_index.rotation | 240 |
| abstract_inverted_index.spectrum | 248 |
| abstract_inverted_index.subspace | 165 |
| abstract_inverted_index.systems. | 15 |
| abstract_inverted_index.$\mathcal | 43, 91, 166 |
| abstract_inverted_index.Combining | 137 |
| abstract_inverted_index.Stepanoff | 251 |
| abstract_inverted_index.classical | 109 |
| abstract_inverted_index.coalgebra | 46 |
| abstract_inverted_index.densities | 131 |
| abstract_inverted_index.dimension | 198 |
| abstract_inverted_index.dynamical | 232 |
| abstract_inverted_index.evolution | 9, 65, 81, 147 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.functions | 112 |
| abstract_inverted_index.generated | 89, 200 |
| abstract_inverted_index.generator | 28 |
| abstract_inverted_index.numerical | 228 |
| abstract_inverted_index.operators | 66 |
| abstract_inverted_index.pointwise | 54 |
| abstract_inverted_index.structure | 47, 51 |
| abstract_inverted_index.F(\mathcal | 170 |
| abstract_inverted_index.Leveraging | 58 |
| abstract_inverted_index.collection | 203 |
| abstract_inverted_index.evaluation | 154 |
| abstract_inverted_index.functions. | 57 |
| abstract_inverted_index.operators) | 77, 120 |
| abstract_inverted_index.positivity | 215 |
| abstract_inverted_index.structure, | 60 |
| abstract_inverted_index.$(2d+1)^n$, | 199 |
| abstract_inverted_index.$F(\mathcal | 87 |
| abstract_inverted_index.($L^\infty$ | 111 |
| abstract_inverted_index.arbitrarily | 173 |
| abstract_inverted_index.convergence | 222 |
| abstract_inverted_index.information | 191 |
| abstract_inverted_index.observables | 11, 110, 118, 149 |
| abstract_inverted_index.preserving. | 216 |
| abstract_inverted_index.probability | 130 |
| abstract_inverted_index.regularized | 75 |
| abstract_inverted_index.reproducing | 39 |
| abstract_inverted_index.theoretical | 221 |
| abstract_inverted_index.topological | 257 |
| abstract_inverted_index.Furthermore, | 211 |
| abstract_inverted_index.applications | 229 |
| abstract_inverted_index.skew-adjoint | 26, 32 |
| abstract_inverted_index.(self-adjoint | 119 |
| abstract_inverted_index.H_τ^{\otimes | 167 |
| abstract_inverted_index.approximating | 7 |
| abstract_inverted_index.approximation | 23, 143, 186, 213 |
| abstract_inverted_index.constructions | 139 |
| abstract_inverted_index.representable | 152 |
| abstract_inverted_index.eigenfunctions | 208 |
| abstract_inverted_index.representation | 107, 128 |
| abstract_inverted_index.diagonalizable, | 31 |
| abstract_inverted_index.multiplicatively | 95 |
| abstract_inverted_index.quantum-inspired | 185 |
| abstract_inverted_index.measure-preserving | 13 |
| abstract_inverted_index.spectrally-convergent | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |