Tensor-Train Networks for Learning Predictive Modeling of Multidimensional Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2101.09184
In this work, we firstly apply the Train-Tensor (TT) networks to construct a compact representation of the classical Multilayer Perceptron, representing a reduction of up to 95% of the coefficients. A comparative analysis between tensor model and standard multilayer neural networks is also carried out in the context of prediction of the Mackey-Glass noisy chaotic time series and NASDAQ index. We show that the weights of a multidimensional regression model can be learned by means of TT network and the optimization of TT weights is a more robust to the impact of coefficient initialization and hyper-parameter setting. Furthermore, an efficient algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational calculus, providing a much faster convergence than the well-known adaptive learning-method algorithms, widely applied for optimizing neural networks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2101.09184
- https://arxiv.org/pdf/2101.09184
- OA Status
- green
- Cited By
- 2
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3121472434
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3121472434Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2101.09184Digital Object Identifier
- Title
-
Tensor-Train Networks for Learning Predictive Modeling of Multidimensional DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-22Full publication date if available
- Authors
-
Michele Nazareth da Costa, Romis Attux, Andrzej Cichocki, João Marcos Travassos RomanoList of authors in order
- Landing page
-
https://arxiv.org/abs/2101.09184Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2101.09184Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2101.09184Direct OA link when available
- Concepts
-
Tensor (intrinsic definition), Computer science, Artificial intelligence, Machine learning, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3121472434 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2101.09184 |
| ids.doi | https://doi.org/10.48550/arxiv.2101.09184 |
| ids.mag | 3121472434 |
| ids.openalex | https://openalex.org/W3121472434 |
| fwci | |
| type | preprint |
| title | Tensor-Train Networks for Learning Predictive Modeling of Multidimensional Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155281189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5752723217010498 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[0].display_name | Tensor (intrinsic definition) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5476117134094238 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.477236270904541 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4534490406513214 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.21733689308166504 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C2524010 |
| concepts[5].level | 1 |
| concepts[5].score | 0.08094599843025208 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[5].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/tensor |
| keywords[0].score | 0.5752723217010498 |
| keywords[0].display_name | Tensor (intrinsic definition) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5476117134094238 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.477236270904541 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.4534490406513214 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.21733689308166504 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/geometry |
| keywords[5].score | 0.08094599843025208 |
| keywords[5].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2101.09184 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2101.09184 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2101.09184 |
| locations[1].id | doi:10.48550/arxiv.2101.09184 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2101.09184 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5046376896 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0721-3722 |
| authorships[0].author.display_name | Michele Nazareth da Costa |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181391015 |
| authorships[0].affiliations[0].raw_affiliation_string | State University of Campinas |
| authorships[0].institutions[0].id | https://openalex.org/I181391015 |
| authorships[0].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michele Nazareth da Costa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State University of Campinas |
| authorships[1].author.id | https://openalex.org/A5075373200 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2961-4044 |
| authorships[1].author.display_name | Romis Attux |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181391015 |
| authorships[1].affiliations[0].raw_affiliation_string | State University of Campinas |
| authorships[1].institutions[0].id | https://openalex.org/I181391015 |
| authorships[1].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Romis Attux |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State University of Campinas |
| authorships[2].author.id | https://openalex.org/A5018676117 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8364-7226 |
| authorships[2].author.display_name | Andrzej Cichocki |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125989756 |
| authorships[2].affiliations[0].raw_affiliation_string | Skoltech#TAB# |
| authorships[2].institutions[0].id | https://openalex.org/I125989756 |
| authorships[2].institutions[0].ror | https://ror.org/03f9nc143 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125989756 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | Skolkovo Institute of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrzej Cichocki |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Skoltech#TAB# |
| authorships[3].author.id | https://openalex.org/A5073005597 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2159-160X |
| authorships[3].author.display_name | João Marcos Travassos Romano |
| authorships[3].countries | BR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181391015 |
| authorships[3].affiliations[0].raw_affiliation_string | State University of Campinas |
| authorships[3].institutions[0].id | https://openalex.org/I181391015 |
| authorships[3].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[3].institutions[0].country_code | BR |
| authorships[3].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | João M. T. Romano |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State University of Campinas |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2101.09184 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-02-01T00:00:00 |
| display_name | Tensor-Train Networks for Learning Predictive Modeling of Multidimensional Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2101.09184 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2101.09184 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2101.09184 |
| primary_location.id | pmh:oai:arXiv.org:2101.09184 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2101.09184 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2101.09184 |
| publication_date | 2021-01-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3099497510, https://openalex.org/W3020111007, https://openalex.org/W2132556782, https://openalex.org/W1586335931, https://openalex.org/W1798945469, https://openalex.org/W3022643593, https://openalex.org/W2923124012, https://openalex.org/W2121129397, https://openalex.org/W2088522763, https://openalex.org/W1825959699, https://openalex.org/W3101570982, https://openalex.org/W2028573274, https://openalex.org/W3121797243, https://openalex.org/W2158787087, https://openalex.org/W2785523195, https://openalex.org/W1972510094, https://openalex.org/W2314247251, https://openalex.org/W2161913203, https://openalex.org/W2025936568, https://openalex.org/W2779200694, https://openalex.org/W3004777528, https://openalex.org/W3119324675, https://openalex.org/W1554944419, https://openalex.org/W1663973292, https://openalex.org/W2053865013, https://openalex.org/W3012561096, https://openalex.org/W1649865121, https://openalex.org/W2024165284, https://openalex.org/W1977271127, https://openalex.org/W2062243225, https://openalex.org/W2407277018, https://openalex.org/W3031759008, https://openalex.org/W1995406764, https://openalex.org/W2047028564, https://openalex.org/W1979575715, https://openalex.org/W2114001875, https://openalex.org/W2752217370, https://openalex.org/W3126937085, https://openalex.org/W3081927587, https://openalex.org/W3034910775, https://openalex.org/W2137226992, https://openalex.org/W2951542569, https://openalex.org/W2094631910, https://openalex.org/W2172073485, https://openalex.org/W2122825543, https://openalex.org/W2168913925, https://openalex.org/W1522301498, https://openalex.org/W2170299475, https://openalex.org/W2135046866, https://openalex.org/W2119821739, https://openalex.org/W2226733402, https://openalex.org/W2017387343, https://openalex.org/W1993482030, https://openalex.org/W2070784118, https://openalex.org/W2767841519, https://openalex.org/W2031216664, https://openalex.org/W2969855422, https://openalex.org/W1596717185, https://openalex.org/W2036133196, https://openalex.org/W2015393497, https://openalex.org/W2111440106, https://openalex.org/W2347891459, https://openalex.org/W3148453925, https://openalex.org/W1492221128 |
| referenced_works_count | 64 |
| abstract_inverted_index.A | 30 |
| abstract_inverted_index.a | 12, 21, 66, 85, 116, 122 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.TT | 76, 82 |
| abstract_inverted_index.We | 60 |
| abstract_inverted_index.an | 98 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 45, 113 |
| abstract_inverted_index.is | 41, 84 |
| abstract_inverted_index.of | 15, 23, 27, 48, 50, 65, 75, 81, 91, 118 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.to | 10, 25, 88 |
| abstract_inverted_index.up | 24 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.95% | 26 |
| abstract_inverted_index.and | 36, 57, 78, 94 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 109, 134 |
| abstract_inverted_index.has | 106 |
| abstract_inverted_index.out | 44 |
| abstract_inverted_index.the | 6, 16, 28, 46, 51, 63, 79, 89, 111, 127 |
| abstract_inverted_index.(TT) | 8 |
| abstract_inverted_index.also | 42 |
| abstract_inverted_index.been | 107 |
| abstract_inverted_index.more | 86 |
| abstract_inverted_index.much | 123 |
| abstract_inverted_index.show | 61 |
| abstract_inverted_index.than | 126 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.time | 55 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.apply | 5 |
| abstract_inverted_index.based | 101 |
| abstract_inverted_index.least | 104 |
| abstract_inverted_index.means | 74 |
| abstract_inverted_index.model | 35, 69 |
| abstract_inverted_index.noisy | 53 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.NASDAQ | 58 |
| abstract_inverted_index.faster | 124 |
| abstract_inverted_index.impact | 90 |
| abstract_inverted_index.index. | 59 |
| abstract_inverted_index.neural | 39, 136 |
| abstract_inverted_index.robust | 87 |
| abstract_inverted_index.series | 56 |
| abstract_inverted_index.tensor | 34 |
| abstract_inverted_index.widely | 132 |
| abstract_inverted_index.applied | 133 |
| abstract_inverted_index.between | 33 |
| abstract_inverted_index.carried | 43 |
| abstract_inverted_index.chaotic | 54 |
| abstract_inverted_index.compact | 13 |
| abstract_inverted_index.context | 47 |
| abstract_inverted_index.firstly | 4 |
| abstract_inverted_index.learned | 72 |
| abstract_inverted_index.network | 77 |
| abstract_inverted_index.squares | 105 |
| abstract_inverted_index.weights | 64, 83, 112 |
| abstract_inverted_index.adaptive | 129 |
| abstract_inverted_index.analysis | 32 |
| abstract_inverted_index.networks | 9, 40 |
| abstract_inverted_index.proposed | 108 |
| abstract_inverted_index.setting. | 96 |
| abstract_inverted_index.standard | 37 |
| abstract_inverted_index.TT-format | 114 |
| abstract_inverted_index.algorithm | 100 |
| abstract_inverted_index.calculus, | 120 |
| abstract_inverted_index.classical | 17 |
| abstract_inverted_index.construct | 11 |
| abstract_inverted_index.efficient | 99 |
| abstract_inverted_index.networks. | 137 |
| abstract_inverted_index.providing | 121 |
| abstract_inverted_index.reduction | 22, 117 |
| abstract_inverted_index.Multilayer | 18 |
| abstract_inverted_index.multilayer | 38 |
| abstract_inverted_index.optimizing | 135 |
| abstract_inverted_index.prediction | 49 |
| abstract_inverted_index.regression | 68 |
| abstract_inverted_index.well-known | 128 |
| abstract_inverted_index.Perceptron, | 19 |
| abstract_inverted_index.algorithms, | 131 |
| abstract_inverted_index.alternating | 103 |
| abstract_inverted_index.coefficient | 92 |
| abstract_inverted_index.comparative | 31 |
| abstract_inverted_index.convergence | 125 |
| abstract_inverted_index.Furthermore, | 97 |
| abstract_inverted_index.Mackey-Glass | 52 |
| abstract_inverted_index.Train-Tensor | 7 |
| abstract_inverted_index.optimization | 80 |
| abstract_inverted_index.representing | 20 |
| abstract_inverted_index.approximating | 110 |
| abstract_inverted_index.coefficients. | 29 |
| abstract_inverted_index.computational | 119 |
| abstract_inverted_index.initialization | 93 |
| abstract_inverted_index.representation | 14 |
| abstract_inverted_index.hyper-parameter | 95 |
| abstract_inverted_index.learning-method | 130 |
| abstract_inverted_index.multidimensional | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |