Tensorized Hypergraph Neural Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.02560
Hypergraph neural networks (HGNN) have recently become attractive and received significant attention due to their excellent performance in various domains. However, most existing HGNNs rely on first-order approximations of hypergraph connectivity patterns, which ignores important high-order information. To address this issue, we propose a novel adjacency-tensor-based \textbf{T}ensorized \textbf{H}ypergraph \textbf{N}eural \textbf{N}etwork (THNN). THNN is a faithful hypergraph modeling framework through high-order outer product feature message passing and is a natural tensor extension of the adjacency-matrix-based graph neural networks. The proposed THNN is equivalent to a high-order polynomial regression scheme, which enables THNN with the ability to efficiently extract high-order information from uniform hypergraphs. Moreover, in consideration of the exponential complexity of directly processing high-order outer product features, we propose using a partially symmetric CP decomposition approach to reduce model complexity to a linear degree. Additionally, we propose two simple yet effective extensions of our method for non-uniform hypergraphs commonly found in real-world applications. Results from experiments on two widely used {hypergraph datasets for 3-D visual object classification} show the model's promising performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.02560
- https://arxiv.org/pdf/2306.02560
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379539678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379539678Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.02560Digital Object Identifier
- Title
-
Tensorized Hypergraph Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-05Full publication date if available
- Authors
-
Maolin Wang, Yaoming Zhen, Pan Yu, Zenglin Xu, Ruocheng Guo, Xiangyu ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.02560Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.02560Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.02560Direct OA link when available
- Concepts
-
Hypergraph, Adjacency list, Adjacency matrix, Artificial neural network, Computer science, Order (exchange), Polynomial, Simple (philosophy), Graph, Theoretical computer science, Mathematics, Discrete mathematics, Algorithm, Artificial intelligence, Finance, Epistemology, Economics, Mathematical analysis, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379539678 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.02560 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.02560 |
| ids.openalex | https://openalex.org/W4379539678 |
| fwci | |
| type | preprint |
| title | Tensorized Hypergraph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781221856 |
| concepts[0].level | 2 |
| concepts[0].score | 0.953376293182373 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q840247 |
| concepts[0].display_name | Hypergraph |
| concepts[1].id | https://openalex.org/C110484373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6437867283821106 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q264398 |
| concepts[1].display_name | Adjacency list |
| concepts[2].id | https://openalex.org/C180356752 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5354962348937988 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727035 |
| concepts[2].display_name | Adjacency matrix |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5001909732818604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.494809091091156 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C182306322 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4359549880027771 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[5].display_name | Order (exchange) |
| concepts[6].id | https://openalex.org/C90119067 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4239964485168457 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[6].display_name | Polynomial |
| concepts[7].id | https://openalex.org/C2780586882 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4175741374492645 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[7].display_name | Simple (philosophy) |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4007839560508728 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3851325511932373 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3766217827796936 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C118615104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3401873707771301 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[11].display_name | Discrete mathematics |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32745301723480225 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22584369778633118 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C10138342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[14].display_name | Finance |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/hypergraph |
| keywords[0].score | 0.953376293182373 |
| keywords[0].display_name | Hypergraph |
| keywords[1].id | https://openalex.org/keywords/adjacency-list |
| keywords[1].score | 0.6437867283821106 |
| keywords[1].display_name | Adjacency list |
| keywords[2].id | https://openalex.org/keywords/adjacency-matrix |
| keywords[2].score | 0.5354962348937988 |
| keywords[2].display_name | Adjacency matrix |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5001909732818604 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.494809091091156 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/order |
| keywords[5].score | 0.4359549880027771 |
| keywords[5].display_name | Order (exchange) |
| keywords[6].id | https://openalex.org/keywords/polynomial |
| keywords[6].score | 0.4239964485168457 |
| keywords[6].display_name | Polynomial |
| keywords[7].id | https://openalex.org/keywords/simple |
| keywords[7].score | 0.4175741374492645 |
| keywords[7].display_name | Simple (philosophy) |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.4007839560508728 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.3851325511932373 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3766217827796936 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[11].score | 0.3401873707771301 |
| keywords[11].display_name | Discrete mathematics |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.32745301723480225 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.22584369778633118 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.02560 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.02560 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.02560 |
| locations[1].id | doi:10.48550/arxiv.2306.02560 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.02560 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014749523 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7449-9834 |
| authorships[0].author.display_name | Maolin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Maolin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026800128 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3724-9200 |
| authorships[1].author.display_name | Yaoming Zhen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhen, Yaoming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100665153 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3333-9719 |
| authorships[2].author.display_name | Pan Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pan, Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051227924 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5550-6461 |
| authorships[3].author.display_name | Zenglin Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Zenglin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5054719216 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8522-6142 |
| authorships[4].author.display_name | Ruocheng Guo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guo, Ruocheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100645854 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2926-4416 |
| authorships[5].author.display_name | Xiangyu Zhao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhao, Xiangyu |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.02560 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tensorized Hypergraph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W4213150077, https://openalex.org/W4309045449, https://openalex.org/W2369410163, https://openalex.org/W2059018062, https://openalex.org/W2604585036, https://openalex.org/W2078477160, https://openalex.org/W1989103179, https://openalex.org/W1991172810, https://openalex.org/W125803343, https://openalex.org/W2117632582 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.02560 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.02560 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.02560 |
| primary_location.id | pmh:oai:arXiv.org:2306.02560 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.02560 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.02560 |
| publication_date | 2023-06-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 43, 53, 67, 83, 119, 130 |
| abstract_inverted_index.CP | 122 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.in | 17, 103, 149 |
| abstract_inverted_index.is | 52, 66, 80 |
| abstract_inverted_index.of | 28, 71, 105, 109, 141 |
| abstract_inverted_index.on | 25, 155 |
| abstract_inverted_index.to | 13, 82, 94, 125, 129 |
| abstract_inverted_index.we | 41, 116, 134 |
| abstract_inverted_index.3-D | 162 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.and | 8, 65 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 144, 161 |
| abstract_inverted_index.our | 142 |
| abstract_inverted_index.the | 72, 92, 106, 167 |
| abstract_inverted_index.two | 136, 156 |
| abstract_inverted_index.yet | 138 |
| abstract_inverted_index.THNN | 51, 79, 90 |
| abstract_inverted_index.from | 99, 153 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.most | 21 |
| abstract_inverted_index.rely | 24 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.used | 158 |
| abstract_inverted_index.with | 91 |
| abstract_inverted_index.HGNNs | 23 |
| abstract_inverted_index.found | 148 |
| abstract_inverted_index.graph | 74 |
| abstract_inverted_index.model | 127 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.outer | 60, 113 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.which | 32, 88 |
| abstract_inverted_index.(HGNN) | 3 |
| abstract_inverted_index.become | 6 |
| abstract_inverted_index.issue, | 40 |
| abstract_inverted_index.linear | 131 |
| abstract_inverted_index.method | 143 |
| abstract_inverted_index.neural | 1, 75 |
| abstract_inverted_index.object | 164 |
| abstract_inverted_index.reduce | 126 |
| abstract_inverted_index.simple | 137 |
| abstract_inverted_index.tensor | 69 |
| abstract_inverted_index.visual | 163 |
| abstract_inverted_index.widely | 157 |
| abstract_inverted_index.(THNN). | 50 |
| abstract_inverted_index.Results | 152 |
| abstract_inverted_index.ability | 93 |
| abstract_inverted_index.address | 38 |
| abstract_inverted_index.degree. | 132 |
| abstract_inverted_index.enables | 89 |
| abstract_inverted_index.extract | 96 |
| abstract_inverted_index.feature | 62 |
| abstract_inverted_index.ignores | 33 |
| abstract_inverted_index.message | 63 |
| abstract_inverted_index.model's | 168 |
| abstract_inverted_index.natural | 68 |
| abstract_inverted_index.passing | 64 |
| abstract_inverted_index.product | 61, 114 |
| abstract_inverted_index.propose | 42, 117, 135 |
| abstract_inverted_index.scheme, | 87 |
| abstract_inverted_index.through | 58 |
| abstract_inverted_index.uniform | 100 |
| abstract_inverted_index.various | 18 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.approach | 124 |
| abstract_inverted_index.commonly | 147 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.directly | 110 |
| abstract_inverted_index.domains. | 19 |
| abstract_inverted_index.existing | 22 |
| abstract_inverted_index.faithful | 54 |
| abstract_inverted_index.modeling | 56 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.received | 9 |
| abstract_inverted_index.recently | 5 |
| abstract_inverted_index.Moreover, | 102 |
| abstract_inverted_index.attention | 11 |
| abstract_inverted_index.effective | 139 |
| abstract_inverted_index.excellent | 15 |
| abstract_inverted_index.extension | 70 |
| abstract_inverted_index.features, | 115 |
| abstract_inverted_index.framework | 57 |
| abstract_inverted_index.important | 34 |
| abstract_inverted_index.networks. | 76 |
| abstract_inverted_index.partially | 120 |
| abstract_inverted_index.patterns, | 31 |
| abstract_inverted_index.promising | 169 |
| abstract_inverted_index.symmetric | 121 |
| abstract_inverted_index.Hypergraph | 0 |
| abstract_inverted_index.attractive | 7 |
| abstract_inverted_index.complexity | 108, 128 |
| abstract_inverted_index.equivalent | 81 |
| abstract_inverted_index.extensions | 140 |
| abstract_inverted_index.high-order | 35, 59, 84, 97, 112 |
| abstract_inverted_index.hypergraph | 29, 55 |
| abstract_inverted_index.polynomial | 85 |
| abstract_inverted_index.processing | 111 |
| abstract_inverted_index.real-world | 150 |
| abstract_inverted_index.regression | 86 |
| abstract_inverted_index.efficiently | 95 |
| abstract_inverted_index.experiments | 154 |
| abstract_inverted_index.exponential | 107 |
| abstract_inverted_index.first-order | 26 |
| abstract_inverted_index.hypergraphs | 146 |
| abstract_inverted_index.information | 98 |
| abstract_inverted_index.non-uniform | 145 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.{hypergraph | 159 |
| abstract_inverted_index.connectivity | 30 |
| abstract_inverted_index.hypergraphs. | 101 |
| abstract_inverted_index.information. | 36 |
| abstract_inverted_index.performance. | 170 |
| abstract_inverted_index.Additionally, | 133 |
| abstract_inverted_index.applications. | 151 |
| abstract_inverted_index.consideration | 104 |
| abstract_inverted_index.decomposition | 123 |
| abstract_inverted_index.approximations | 27 |
| abstract_inverted_index.\textbf{N}eural | 48 |
| abstract_inverted_index.classification} | 165 |
| abstract_inverted_index.\textbf{N}etwork | 49 |
| abstract_inverted_index.\textbf{H}ypergraph | 47 |
| abstract_inverted_index.\textbf{T}ensorized | 46 |
| abstract_inverted_index.adjacency-matrix-based | 73 |
| abstract_inverted_index.adjacency-tensor-based | 45 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |