TensorMask: A Foundation for Dense Object Segmentation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1903.12174
Sliding-window object detectors that generate bounding-box object predictions over a dense, regular grid have advanced rapidly and proven popular. In contrast, modern instance segmentation approaches are dominated by methods that first detect object bounding boxes, and then crop and segment these regions, as popularized by Mask R-CNN. In this work, we investigate the paradigm of dense sliding-window instance segmentation, which is surprisingly under-explored. Our core observation is that this task is fundamentally different than other dense prediction tasks such as semantic segmentation or bounding-box object detection, as the output at every spatial location is itself a geometric structure with its own spatial dimensions. To formalize this, we treat dense instance segmentation as a prediction task over 4D tensors and present a general framework called TensorMask that explicitly captures this geometry and enables novel operators on 4D tensors. We demonstrate that the tensor view leads to large gains over baselines that ignore this structure, and leads to results comparable to Mask R-CNN. These promising results suggest that TensorMask can serve as a foundation for novel advances in dense mask prediction and a more complete understanding of the task. Code will be made available.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1903.12174
- https://arxiv.org/pdf/1903.12174
- OA Status
- green
- Cited By
- 36
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2923575270
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2923575270Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1903.12174Digital Object Identifier
- Title
-
TensorMask: A Foundation for Dense Object SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-28Full publication date if available
- Authors
-
Xinlei Chen, Ross Girshick, Kaiming He, Piotr DollárList of authors in order
- Landing page
-
https://arxiv.org/abs/1903.12174Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1903.12174Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1903.12174Direct OA link when available
- Concepts
-
Segmentation, Minimum bounding box, Bounding overwatch, Computer science, Object (grammar), Task (project management), Grid, Artificial intelligence, Sliding window protocol, Tensor (intrinsic definition), Object detection, Pattern recognition (psychology), Window (computing), Computer vision, Algorithm, Image (mathematics), Mathematics, Geometry, Management, Economics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 4, 2022: 1, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2923575270 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1903.12174 |
| ids.doi | https://doi.org/10.48550/arxiv.1903.12174 |
| ids.mag | 2923575270 |
| ids.openalex | https://openalex.org/W2923575270 |
| fwci | |
| type | preprint |
| title | TensorMask: A Foundation for Dense Object Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9847999811172485 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9718999862670898 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8350397348403931 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C147037132 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7899604439735413 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6865426 |
| concepts[1].display_name | Minimum bounding box |
| concepts[2].id | https://openalex.org/C63584917 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7468147277832031 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[2].display_name | Bounding overwatch |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7092486619949341 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6770808696746826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5966082811355591 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C187691185 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5702193975448608 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[6].display_name | Grid |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5684925317764282 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C102392041 |
| concepts[8].level | 3 |
| concepts[8].score | 0.530342698097229 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[8].display_name | Sliding window protocol |
| concepts[9].id | https://openalex.org/C155281189 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44551730155944824 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[9].display_name | Tensor (intrinsic definition) |
| concepts[10].id | https://openalex.org/C2776151529 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42421096563339233 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[10].display_name | Object detection |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3912496566772461 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C2778751112 |
| concepts[12].level | 2 |
| concepts[12].score | 0.37617945671081543 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[12].display_name | Window (computing) |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.37606555223464966 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32426905632019043 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.287080854177475 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.16170576214790344 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13730984926223755 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8350397348403931 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/minimum-bounding-box |
| keywords[1].score | 0.7899604439735413 |
| keywords[1].display_name | Minimum bounding box |
| keywords[2].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[2].score | 0.7468147277832031 |
| keywords[2].display_name | Bounding overwatch |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7092486619949341 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.6770808696746826 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5966082811355591 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/grid |
| keywords[6].score | 0.5702193975448608 |
| keywords[6].display_name | Grid |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5684925317764282 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[8].score | 0.530342698097229 |
| keywords[8].display_name | Sliding window protocol |
| keywords[9].id | https://openalex.org/keywords/tensor |
| keywords[9].score | 0.44551730155944824 |
| keywords[9].display_name | Tensor (intrinsic definition) |
| keywords[10].id | https://openalex.org/keywords/object-detection |
| keywords[10].score | 0.42421096563339233 |
| keywords[10].display_name | Object detection |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3912496566772461 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/window |
| keywords[12].score | 0.37617945671081543 |
| keywords[12].display_name | Window (computing) |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.37606555223464966 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.32426905632019043 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.287080854177475 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.16170576214790344 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.13730984926223755 |
| keywords[17].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1903.12174 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1903.12174 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1903.12174 |
| locations[1].id | doi:10.48550/arxiv.1903.12174 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1903.12174 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5016095713 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8271-5023 |
| authorships[0].author.display_name | Xinlei Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinlei Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049246408 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ross Girshick |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ross Girshick |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100700361 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7318-9658 |
| authorships[2].author.display_name | Kaiming He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kaiming He |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057866698 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Piotr Dollár |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Piotr Dollár |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1903.12174 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TensorMask: A Foundation for Dense Object Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4237171675, https://openalex.org/W3036286480, https://openalex.org/W3192357901, https://openalex.org/W2387360586, https://openalex.org/W4287027631, https://openalex.org/W2952736415, https://openalex.org/W3209723314, https://openalex.org/W3205398323, https://openalex.org/W2883297582, https://openalex.org/W4390524233 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 10 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1903.12174 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1903.12174 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1903.12174 |
| primary_location.id | pmh:oai:arXiv.org:1903.12174 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1903.12174 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1903.12174 |
| publication_date | 2019-03-28 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2168356304, https://openalex.org/W2777795072, https://openalex.org/W2159386181, https://openalex.org/W2912662889, https://openalex.org/W2964297960, https://openalex.org/W3106250896, https://openalex.org/W1861492603, https://openalex.org/W2565639579, https://openalex.org/W2570343428, https://openalex.org/W2622263826, https://openalex.org/W2340897893, https://openalex.org/W2964288706, https://openalex.org/W1507506748, https://openalex.org/W2963857746, https://openalex.org/W2555182955, https://openalex.org/W2963150697, https://openalex.org/W2164598857, https://openalex.org/W809122546, https://openalex.org/W2557889580, https://openalex.org/W2613718673, https://openalex.org/W1991367009, https://openalex.org/W2608858501, https://openalex.org/W2963016543, https://openalex.org/W2991391304, https://openalex.org/W2102605133, https://openalex.org/W2129305389, https://openalex.org/W2216125271, https://openalex.org/W2194775991, https://openalex.org/W1903029394, https://openalex.org/W2963351448, https://openalex.org/W2781228439, https://openalex.org/W2056695679, https://openalex.org/W2558156561, https://openalex.org/W1536680647, https://openalex.org/W2317851288, https://openalex.org/W2322480645, https://openalex.org/W2147800946 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 9, 95, 112, 120, 170, 180 |
| abstract_inverted_index.4D | 116, 135 |
| abstract_inverted_index.In | 19, 47 |
| abstract_inverted_index.To | 103 |
| abstract_inverted_index.We | 137 |
| abstract_inverted_index.as | 42, 79, 86, 111, 169 |
| abstract_inverted_index.at | 89 |
| abstract_inverted_index.be | 189 |
| abstract_inverted_index.by | 27, 44 |
| abstract_inverted_index.in | 175 |
| abstract_inverted_index.is | 60, 66, 70, 93 |
| abstract_inverted_index.of | 54, 184 |
| abstract_inverted_index.on | 134 |
| abstract_inverted_index.or | 82 |
| abstract_inverted_index.to | 144, 155, 158 |
| abstract_inverted_index.we | 50, 106 |
| abstract_inverted_index.Our | 63 |
| abstract_inverted_index.and | 16, 35, 38, 118, 130, 153, 179 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.for | 172 |
| abstract_inverted_index.its | 99 |
| abstract_inverted_index.own | 100 |
| abstract_inverted_index.the | 52, 87, 140, 185 |
| abstract_inverted_index.Code | 187 |
| abstract_inverted_index.Mask | 45, 159 |
| abstract_inverted_index.core | 64 |
| abstract_inverted_index.crop | 37 |
| abstract_inverted_index.grid | 12 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.made | 190 |
| abstract_inverted_index.mask | 177 |
| abstract_inverted_index.more | 181 |
| abstract_inverted_index.over | 8, 115, 147 |
| abstract_inverted_index.such | 78 |
| abstract_inverted_index.task | 69, 114 |
| abstract_inverted_index.than | 73 |
| abstract_inverted_index.that | 3, 29, 67, 125, 139, 149, 165 |
| abstract_inverted_index.then | 36 |
| abstract_inverted_index.this | 48, 68, 128, 151 |
| abstract_inverted_index.view | 142 |
| abstract_inverted_index.will | 188 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.These | 161 |
| abstract_inverted_index.dense | 55, 75, 108, 176 |
| abstract_inverted_index.every | 90 |
| abstract_inverted_index.first | 30 |
| abstract_inverted_index.gains | 146 |
| abstract_inverted_index.large | 145 |
| abstract_inverted_index.leads | 143, 154 |
| abstract_inverted_index.novel | 132, 173 |
| abstract_inverted_index.other | 74 |
| abstract_inverted_index.serve | 168 |
| abstract_inverted_index.task. | 186 |
| abstract_inverted_index.tasks | 77 |
| abstract_inverted_index.these | 40 |
| abstract_inverted_index.this, | 105 |
| abstract_inverted_index.treat | 107 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.work, | 49 |
| abstract_inverted_index.R-CNN. | 46, 160 |
| abstract_inverted_index.boxes, | 34 |
| abstract_inverted_index.called | 123 |
| abstract_inverted_index.dense, | 10 |
| abstract_inverted_index.detect | 31 |
| abstract_inverted_index.ignore | 150 |
| abstract_inverted_index.itself | 94 |
| abstract_inverted_index.modern | 21 |
| abstract_inverted_index.object | 1, 6, 32, 84 |
| abstract_inverted_index.output | 88 |
| abstract_inverted_index.proven | 17 |
| abstract_inverted_index.tensor | 141 |
| abstract_inverted_index.enables | 131 |
| abstract_inverted_index.general | 121 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.present | 119 |
| abstract_inverted_index.rapidly | 15 |
| abstract_inverted_index.regular | 11 |
| abstract_inverted_index.results | 156, 163 |
| abstract_inverted_index.segment | 39 |
| abstract_inverted_index.spatial | 91, 101 |
| abstract_inverted_index.suggest | 164 |
| abstract_inverted_index.tensors | 117 |
| abstract_inverted_index.advanced | 14 |
| abstract_inverted_index.advances | 174 |
| abstract_inverted_index.bounding | 33 |
| abstract_inverted_index.captures | 127 |
| abstract_inverted_index.complete | 182 |
| abstract_inverted_index.generate | 4 |
| abstract_inverted_index.geometry | 129 |
| abstract_inverted_index.instance | 22, 57, 109 |
| abstract_inverted_index.location | 92 |
| abstract_inverted_index.paradigm | 53 |
| abstract_inverted_index.popular. | 18 |
| abstract_inverted_index.regions, | 41 |
| abstract_inverted_index.semantic | 80 |
| abstract_inverted_index.tensors. | 136 |
| abstract_inverted_index.baselines | 148 |
| abstract_inverted_index.contrast, | 20 |
| abstract_inverted_index.detectors | 2 |
| abstract_inverted_index.different | 72 |
| abstract_inverted_index.dominated | 26 |
| abstract_inverted_index.formalize | 104 |
| abstract_inverted_index.framework | 122 |
| abstract_inverted_index.geometric | 96 |
| abstract_inverted_index.operators | 133 |
| abstract_inverted_index.promising | 162 |
| abstract_inverted_index.structure | 97 |
| abstract_inverted_index.TensorMask | 124, 166 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.available. | 191 |
| abstract_inverted_index.comparable | 157 |
| abstract_inverted_index.detection, | 85 |
| abstract_inverted_index.explicitly | 126 |
| abstract_inverted_index.foundation | 171 |
| abstract_inverted_index.prediction | 76, 113, 178 |
| abstract_inverted_index.structure, | 152 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.dimensions. | 102 |
| abstract_inverted_index.investigate | 51 |
| abstract_inverted_index.observation | 65 |
| abstract_inverted_index.popularized | 43 |
| abstract_inverted_index.predictions | 7 |
| abstract_inverted_index.bounding-box | 5, 83 |
| abstract_inverted_index.segmentation | 23, 81, 110 |
| abstract_inverted_index.surprisingly | 61 |
| abstract_inverted_index.fundamentally | 71 |
| abstract_inverted_index.segmentation, | 58 |
| abstract_inverted_index.understanding | 183 |
| abstract_inverted_index.Sliding-window | 0 |
| abstract_inverted_index.sliding-window | 56 |
| abstract_inverted_index.under-explored. | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |