Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.03439
Event cameras are advantageous for tasks that require vision sensors with low-latency and sparse output responses. However, the development of deep network algorithms using event cameras has been slow because of the lack of large labelled event camera datasets for network training. This paper reports a method for creating new labelled event datasets by using a text-to-X model, where X is one or multiple output modalities, in the case of this work, events. Our proposed text-to-events model produces synthetic event frames directly from text prompts. It uses an autoencoder which is trained to produce sparse event frames representing event camera outputs. By combining the pretrained autoencoder with a diffusion model architecture, the new text-to-events model is able to generate smooth synthetic event streams of moving objects. The autoencoder was first trained on an event camera dataset of diverse scenes. In the combined training with the diffusion model, the DVS gesture dataset was used. We demonstrate that the model can generate realistic event sequences of human gestures prompted by different text statements. The classification accuracy of the generated sequences, using a classifier trained on the real dataset, ranges between 42% to 92%, depending on the gesture group. The results demonstrate the capability of this method in synthesizing event datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.03439
- https://arxiv.org/pdf/2406.03439
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399448161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399448161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.03439Digital Object Identifier
- Title
-
Text-to-Events: Synthetic Event Camera Streams from Conditional Text InputWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-05Full publication date if available
- Authors
-
J. C. Ott, Zuowen Wang, Shih‐Chii LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.03439Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.03439Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.03439Direct OA link when available
- Concepts
-
STREAMS, Event (particle physics), Computer science, Natural language processing, Artificial intelligence, Physics, Operating system, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399448161 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.03439 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.03439 |
| ids.openalex | https://openalex.org/W4399448161 |
| fwci | |
| type | preprint |
| title | Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11986 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.947700023651123 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1802 |
| topics[0].subfield.display_name | Information Systems and Management |
| topics[0].display_name | Scientific Computing and Data Management |
| topics[1].id | https://openalex.org/T11719 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9176999926567078 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C42090638 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6825251579284668 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4048907 |
| concepts[0].display_name | STREAMS |
| concepts[1].id | https://openalex.org/C2779662365 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6604136824607849 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[1].display_name | Event (particle physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5854353904724121 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4090704917907715 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3806968927383423 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.08718672394752502 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C111919701 |
| concepts[6].level | 1 |
| concepts[6].score | 0.07107013463973999 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[6].display_name | Operating system |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/streams |
| keywords[0].score | 0.6825251579284668 |
| keywords[0].display_name | STREAMS |
| keywords[1].id | https://openalex.org/keywords/event |
| keywords[1].score | 0.6604136824607849 |
| keywords[1].display_name | Event (particle physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5854353904724121 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.4090704917907715 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3806968927383423 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.08718672394752502 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/operating-system |
| keywords[6].score | 0.07107013463973999 |
| keywords[6].display_name | Operating system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.03439 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.03439 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.03439 |
| locations[1].id | doi:10.48550/arxiv.2406.03439 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.03439 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090574378 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. C. Ott |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ott, Joachim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005464029 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8051-9886 |
| authorships[1].author.display_name | Zuowen Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Zuowen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053821067 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7557-045X |
| authorships[2].author.display_name | Shih‐Chii Liu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Liu, Shih-Chii |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.03439 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-08T00:00:00 |
| display_name | Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11986 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.947700023651123 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1802 |
| primary_topic.subfield.display_name | Information Systems and Management |
| primary_topic.display_name | Scientific Computing and Data Management |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2010317732, https://openalex.org/W2483328176, https://openalex.org/W2061705145, https://openalex.org/W193205649, https://openalex.org/W45006177, https://openalex.org/W2016919266, https://openalex.org/W1982793386, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.03439 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.03439 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.03439 |
| primary_location.id | pmh:oai:arXiv.org:2406.03439 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.03439 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.03439 |
| publication_date | 2024-06-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.X | 59 |
| abstract_inverted_index.a | 45, 55, 107, 179 |
| abstract_inverted_index.By | 101 |
| abstract_inverted_index.In | 139 |
| abstract_inverted_index.It | 85 |
| abstract_inverted_index.We | 153 |
| abstract_inverted_index.an | 87, 132 |
| abstract_inverted_index.by | 53, 167 |
| abstract_inverted_index.in | 66, 204 |
| abstract_inverted_index.is | 60, 90, 115 |
| abstract_inverted_index.of | 19, 30, 33, 69, 123, 136, 163, 174, 201 |
| abstract_inverted_index.on | 131, 182, 192 |
| abstract_inverted_index.or | 62 |
| abstract_inverted_index.to | 92, 117, 189 |
| abstract_inverted_index.42% | 188 |
| abstract_inverted_index.DVS | 148 |
| abstract_inverted_index.Our | 73 |
| abstract_inverted_index.The | 126, 171, 196 |
| abstract_inverted_index.and | 12 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.can | 158 |
| abstract_inverted_index.for | 4, 39, 47 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.new | 49, 112 |
| abstract_inverted_index.one | 61 |
| abstract_inverted_index.the | 17, 31, 67, 103, 111, 140, 144, 147, 156, 175, 183, 193, 199 |
| abstract_inverted_index.was | 128, 151 |
| abstract_inverted_index.92%, | 190 |
| abstract_inverted_index.This | 42 |
| abstract_inverted_index.able | 116 |
| abstract_inverted_index.been | 27 |
| abstract_inverted_index.case | 68 |
| abstract_inverted_index.deep | 20 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.real | 184 |
| abstract_inverted_index.slow | 28 |
| abstract_inverted_index.text | 83, 169 |
| abstract_inverted_index.that | 6, 155 |
| abstract_inverted_index.this | 70, 202 |
| abstract_inverted_index.uses | 86 |
| abstract_inverted_index.with | 10, 106, 143 |
| abstract_inverted_index.Event | 0 |
| abstract_inverted_index.event | 24, 36, 51, 79, 95, 98, 121, 133, 161, 206 |
| abstract_inverted_index.first | 129 |
| abstract_inverted_index.human | 164 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.model | 76, 109, 114, 157 |
| abstract_inverted_index.paper | 43 |
| abstract_inverted_index.tasks | 5 |
| abstract_inverted_index.used. | 152 |
| abstract_inverted_index.using | 23, 54, 178 |
| abstract_inverted_index.where | 58 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.work, | 71 |
| abstract_inverted_index.camera | 37, 99, 134 |
| abstract_inverted_index.frames | 80, 96 |
| abstract_inverted_index.group. | 195 |
| abstract_inverted_index.method | 46, 203 |
| abstract_inverted_index.model, | 57, 146 |
| abstract_inverted_index.moving | 124 |
| abstract_inverted_index.output | 14, 64 |
| abstract_inverted_index.ranges | 186 |
| abstract_inverted_index.smooth | 119 |
| abstract_inverted_index.sparse | 13, 94 |
| abstract_inverted_index.vision | 8 |
| abstract_inverted_index.because | 29 |
| abstract_inverted_index.between | 187 |
| abstract_inverted_index.cameras | 1, 25 |
| abstract_inverted_index.dataset | 135, 150 |
| abstract_inverted_index.diverse | 137 |
| abstract_inverted_index.events. | 72 |
| abstract_inverted_index.gesture | 149, 194 |
| abstract_inverted_index.network | 21, 40 |
| abstract_inverted_index.produce | 93 |
| abstract_inverted_index.reports | 44 |
| abstract_inverted_index.require | 7 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.scenes. | 138 |
| abstract_inverted_index.sensors | 9 |
| abstract_inverted_index.streams | 122 |
| abstract_inverted_index.trained | 91, 130, 181 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accuracy | 173 |
| abstract_inverted_index.combined | 141 |
| abstract_inverted_index.creating | 48 |
| abstract_inverted_index.dataset, | 185 |
| abstract_inverted_index.datasets | 38, 52 |
| abstract_inverted_index.directly | 81 |
| abstract_inverted_index.generate | 118, 159 |
| abstract_inverted_index.gestures | 165 |
| abstract_inverted_index.labelled | 35, 50 |
| abstract_inverted_index.multiple | 63 |
| abstract_inverted_index.objects. | 125 |
| abstract_inverted_index.outputs. | 100 |
| abstract_inverted_index.produces | 77 |
| abstract_inverted_index.prompted | 166 |
| abstract_inverted_index.prompts. | 84 |
| abstract_inverted_index.proposed | 74 |
| abstract_inverted_index.training | 142 |
| abstract_inverted_index.combining | 102 |
| abstract_inverted_index.datasets. | 207 |
| abstract_inverted_index.depending | 191 |
| abstract_inverted_index.different | 168 |
| abstract_inverted_index.diffusion | 108, 145 |
| abstract_inverted_index.generated | 176 |
| abstract_inverted_index.realistic | 160 |
| abstract_inverted_index.sequences | 162 |
| abstract_inverted_index.synthetic | 78, 120 |
| abstract_inverted_index.text-to-X | 56 |
| abstract_inverted_index.training. | 41 |
| abstract_inverted_index.algorithms | 22 |
| abstract_inverted_index.capability | 200 |
| abstract_inverted_index.classifier | 180 |
| abstract_inverted_index.pretrained | 104 |
| abstract_inverted_index.responses. | 15 |
| abstract_inverted_index.sequences, | 177 |
| abstract_inverted_index.autoencoder | 88, 105, 127 |
| abstract_inverted_index.demonstrate | 154, 198 |
| abstract_inverted_index.development | 18 |
| abstract_inverted_index.low-latency | 11 |
| abstract_inverted_index.modalities, | 65 |
| abstract_inverted_index.statements. | 170 |
| abstract_inverted_index.advantageous | 3 |
| abstract_inverted_index.representing | 97 |
| abstract_inverted_index.synthesizing | 205 |
| abstract_inverted_index.architecture, | 110 |
| abstract_inverted_index.classification | 172 |
| abstract_inverted_index.text-to-events | 75, 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |