Texture classification in aerial photographs using multiscale and multilayer complex networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.25743/sdm.2021.12.49.011
Texture classification using oriented complex networks considers the functional connections between topological elements and simulates the complex textures more accurately. In contrast to the classical spatial texture analysis, we offer a novel function of weights in complex networks and a classification method that takes into account the scaling and color of textures. For this, three complex networks represented R, G and B components are built, which provide invariance of color aerial photographs obtained at different times. Comparison of the classification results using the proposed multiscale complex networks and conventional texture analysis based on a statistical approach is given. Also we extended this approach on color aerial photographs using multilayer structure of complex network.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.25743/sdm.2021.12.49.011
- https://doi.org/10.25743/sdm.2021.12.49.011
- OA Status
- gold
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3215592611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3215592611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.25743/sdm.2021.12.49.011Digital Object Identifier
- Title
-
Texture classification in aerial photographs using multiscale and multilayer complex networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-12Full publication date if available
- Authors
-
Margarita N. Favorskaya, A.N. ZhukovskayaList of authors in order
- Landing page
-
https://doi.org/10.25743/sdm.2021.12.49.011Publisher landing page
- PDF URL
-
https://doi.org/10.25743/sdm.2021.12.49.011Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.25743/sdm.2021.12.49.011Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Texture (cosmology), Complex network, Pattern recognition (psychology), Scaling, Image texture, Computer vision, Function (biology), Contrast (vision), Topology (electrical circuits), Image (mathematics), Mathematics, Image processing, Geometry, World Wide Web, Evolutionary biology, Biology, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3215592611 |
|---|---|
| doi | https://doi.org/10.25743/sdm.2021.12.49.011 |
| ids.doi | https://doi.org/10.25743/sdm.2021.12.49.011 |
| ids.mag | 3215592611 |
| ids.openalex | https://openalex.org/W3215592611 |
| fwci | 0.0 |
| type | article |
| title | Texture classification in aerial photographs using multiscale and multilayer complex networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 83 |
| biblio.first_page | 74 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9376000165939331 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7128592133522034 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.687724232673645 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781195486 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6798437237739563 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[2].display_name | Texture (cosmology) |
| concepts[3].id | https://openalex.org/C34947359 |
| concepts[3].level | 2 |
| concepts[3].score | 0.610645055770874 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q665189 |
| concepts[3].display_name | Complex network |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5853356719017029 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C99844830 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5210220813751221 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[5].display_name | Scaling |
| concepts[6].id | https://openalex.org/C63099799 |
| concepts[6].level | 4 |
| concepts[6].score | 0.46485626697540283 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17147001 |
| concepts[6].display_name | Image texture |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4641045331954956 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C14036430 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44672122597694397 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[8].display_name | Function (biology) |
| concepts[9].id | https://openalex.org/C2776502983 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4236855208873749 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[9].display_name | Contrast (vision) |
| concepts[10].id | https://openalex.org/C184720557 |
| concepts[10].level | 2 |
| concepts[10].score | 0.33662062883377075 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[10].display_name | Topology (electrical circuits) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.24426105618476868 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.17900773882865906 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C9417928 |
| concepts[13].level | 3 |
| concepts[13].score | 0.1641455590724945 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[13].display_name | Image processing |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09817266464233398 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C136764020 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[15].display_name | World Wide Web |
| concepts[16].id | https://openalex.org/C78458016 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[16].display_name | Evolutionary biology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7128592133522034 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.687724232673645 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/texture |
| keywords[2].score | 0.6798437237739563 |
| keywords[2].display_name | Texture (cosmology) |
| keywords[3].id | https://openalex.org/keywords/complex-network |
| keywords[3].score | 0.610645055770874 |
| keywords[3].display_name | Complex network |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5853356719017029 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/scaling |
| keywords[5].score | 0.5210220813751221 |
| keywords[5].display_name | Scaling |
| keywords[6].id | https://openalex.org/keywords/image-texture |
| keywords[6].score | 0.46485626697540283 |
| keywords[6].display_name | Image texture |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4641045331954956 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/function |
| keywords[8].score | 0.44672122597694397 |
| keywords[8].display_name | Function (biology) |
| keywords[9].id | https://openalex.org/keywords/contrast |
| keywords[9].score | 0.4236855208873749 |
| keywords[9].display_name | Contrast (vision) |
| keywords[10].id | https://openalex.org/keywords/topology |
| keywords[10].score | 0.33662062883377075 |
| keywords[10].display_name | Topology (electrical circuits) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.24426105618476868 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.17900773882865906 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/image-processing |
| keywords[13].score | 0.1641455590724945 |
| keywords[13].display_name | Image processing |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.09817266464233398 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.25743/sdm.2021.12.49.011 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.25743/sdm.2021.12.49.011 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021 |
| locations[0].landing_page_url | http://doi.org/10.25743/sdm.2021.12.49.011 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053328508 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2181-0454 |
| authorships[0].author.display_name | Margarita N. Favorskaya |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I56490300 |
| authorships[0].affiliations[0].raw_affiliation_string | Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I56490300 |
| authorships[0].institutions[0].ror | https://ror.org/05r50mj29 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56490300 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Siberian State Aerospace University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M.N. Favorskaya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia |
| authorships[1].author.id | https://openalex.org/A5072889825 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A.N. Zhukovskaya |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I56490300 |
| authorships[1].affiliations[0].raw_affiliation_string | Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I56490300 |
| authorships[1].institutions[0].ror | https://ror.org/05r50mj29 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I56490300 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Siberian State Aerospace University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | A.N. Zhukovskaya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.25743/sdm.2021.12.49.011 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Texture classification in aerial photographs using multiscale and multilayer complex networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9376000165939331 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2069592018, https://openalex.org/W2075740387, https://openalex.org/W2064404759, https://openalex.org/W2358990940, https://openalex.org/W4234815853, https://openalex.org/W2044270176, https://openalex.org/W2374828682, https://openalex.org/W2388733570, https://openalex.org/W1980033651, https://openalex.org/W4230530180 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.25743/sdm.2021.12.49.011 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.25743/sdm.2021.12.49.011 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021 |
| best_oa_location.landing_page_url | http://doi.org/10.25743/sdm.2021.12.49.011 |
| primary_location.id | doi:10.25743/sdm.2021.12.49.011 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.25743/sdm.2021.12.49.011 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021 |
| primary_location.landing_page_url | http://doi.org/10.25743/sdm.2021.12.49.011 |
| publication_date | 2021-11-12 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964010999, https://openalex.org/W3099128215, https://openalex.org/W2296606109, https://openalex.org/W2916879452, https://openalex.org/W3159912755, https://openalex.org/W2044465660, https://openalex.org/W2118364625, https://openalex.org/W2065301447, https://openalex.org/W2827254, https://openalex.org/W2029173860 |
| referenced_works_count | 10 |
| abstract_inverted_index.B | 61 |
| abstract_inverted_index.G | 59 |
| abstract_inverted_index.a | 30, 39, 93 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.R, | 58 |
| abstract_inverted_index.at | 73 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 96 |
| abstract_inverted_index.of | 33, 50, 68, 77, 110 |
| abstract_inverted_index.on | 92, 103 |
| abstract_inverted_index.to | 22 |
| abstract_inverted_index.we | 28, 99 |
| abstract_inverted_index.For | 52 |
| abstract_inverted_index.and | 13, 38, 48, 60, 87 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.the | 7, 15, 23, 46, 78, 82 |
| abstract_inverted_index.Also | 98 |
| abstract_inverted_index.into | 44 |
| abstract_inverted_index.more | 18 |
| abstract_inverted_index.that | 42 |
| abstract_inverted_index.this | 101 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.color | 49, 69, 104 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.offer | 29 |
| abstract_inverted_index.takes | 43 |
| abstract_inverted_index.this, | 53 |
| abstract_inverted_index.three | 54 |
| abstract_inverted_index.using | 2, 81, 107 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.aerial | 70, 105 |
| abstract_inverted_index.built, | 64 |
| abstract_inverted_index.given. | 97 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.times. | 75 |
| abstract_inverted_index.Texture | 0 |
| abstract_inverted_index.account | 45 |
| abstract_inverted_index.between | 10 |
| abstract_inverted_index.complex | 4, 16, 36, 55, 85, 111 |
| abstract_inverted_index.provide | 66 |
| abstract_inverted_index.results | 80 |
| abstract_inverted_index.scaling | 47 |
| abstract_inverted_index.spatial | 25 |
| abstract_inverted_index.texture | 26, 89 |
| abstract_inverted_index.weights | 34 |
| abstract_inverted_index.analysis | 90 |
| abstract_inverted_index.approach | 95, 102 |
| abstract_inverted_index.contrast | 21 |
| abstract_inverted_index.elements | 12 |
| abstract_inverted_index.extended | 100 |
| abstract_inverted_index.function | 32 |
| abstract_inverted_index.network. | 112 |
| abstract_inverted_index.networks | 5, 37, 56, 86 |
| abstract_inverted_index.obtained | 72 |
| abstract_inverted_index.oriented | 3 |
| abstract_inverted_index.proposed | 83 |
| abstract_inverted_index.textures | 17 |
| abstract_inverted_index.analysis, | 27 |
| abstract_inverted_index.classical | 24 |
| abstract_inverted_index.considers | 6 |
| abstract_inverted_index.different | 74 |
| abstract_inverted_index.simulates | 14 |
| abstract_inverted_index.structure | 109 |
| abstract_inverted_index.textures. | 51 |
| abstract_inverted_index.Comparison | 76 |
| abstract_inverted_index.components | 62 |
| abstract_inverted_index.functional | 8 |
| abstract_inverted_index.invariance | 67 |
| abstract_inverted_index.multilayer | 108 |
| abstract_inverted_index.multiscale | 84 |
| abstract_inverted_index.accurately. | 19 |
| abstract_inverted_index.connections | 9 |
| abstract_inverted_index.photographs | 71, 106 |
| abstract_inverted_index.represented | 57 |
| abstract_inverted_index.statistical | 94 |
| abstract_inverted_index.topological | 11 |
| abstract_inverted_index.conventional | 88 |
| abstract_inverted_index.classification | 1, 40, 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.1533983 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |