The accuracy of automated facial landmarking - a comparative study between Cliniface software and patch-based Convoluted Neural Network algorithm Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/ejo/cjaf009
Background Automatic landmarking software packages simplify the analysis of the 3D facial images. Their main deficiency is the limited accuracy of detecting landmarks for routine clinical applications. Cliniface is readily available open-access software for automatic facial landmarking, its validity has not been fully investigated. Objectives Evaluate the accuracy of Cliniface software in comparison with the developed patch-based Convoluted Neural Network (CNN) algorithm in identifying facial landmarks. Materials /Methods The study was carried out on 30 3D photographic images; twenty anatomical facial landmarks were used for the analysis. The manual digitization of the landmarks was repeated twice by an expert operator, which considered the ground truth for the analysis. Each 3D facial image was imported into Cliniface software, and the landmarks were detected automatically. The same set of the facial landmarks were automatically detected using the developed patch-based CNN algorithm. The 3D image of the face was subdivided into multiple patches, the trained CNN algorithm detected the landmarks within each patch. Partial Procrustes Analysis was applied to assess the accuracy of automated landmarking. The method allowed the measurement of the Euclidean distances between the manually detected landmarks and the corresponding ones generated by each of the two automated methods. The significance level was set at 0.05 for the differences between the measured distances. Results The overall landmark localization error of Cliniface software was 3.66 ± 1.53 mm, Subalar exhibiting the largest discrepancy of more than 8 mm in comparison with the manual digitization. Stomion demonstrated the smallest error. The patch-based CNN algorithm was more accurate than Cliniface software in detecting the facial landmarks, it reached the same level of the manual precision in identifying the same points. The inaccuracy of Cliniface software in detecting the facial landmarks was significantly higher than the manual landmarking precision. Limitations The study was limited to one centre, one groups of 3D images, and one operator. Conclusions The patch-based CNN algorithm provided a satisfactory accuracy of automatic landmarks detection which is satisfactory for the clinical evaluation of the 3D facial images. Cliniface software is limited in its accuracy in detecting certain landmark which bounds its clinical application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/ejo/cjaf009
- OA Status
- green
- Cited By
- 1
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408649142
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408649142Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/ejo/cjaf009Digital Object Identifier
- Title
-
The accuracy of automated facial landmarking - a comparative study between Cliniface software and patch-based Convoluted Neural Network algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-07Full publication date if available
- Authors
-
Bodore Al-baker, Xiangyang Ju, Peter Mossey, Ashraf AyoubList of authors in order
- Landing page
-
https://doi.org/10.1093/ejo/cjaf009Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11923742Direct OA link when available
- Concepts
-
Computer science, Software, Artificial neural network, Artificial intelligence, Algorithm, Pattern recognition (psychology), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408649142 |
|---|---|
| doi | https://doi.org/10.1093/ejo/cjaf009 |
| ids.doi | https://doi.org/10.1093/ejo/cjaf009 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40110937 |
| ids.openalex | https://openalex.org/W4408649142 |
| fwci | 4.77340731 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | Q000033 |
| mesh[2].descriptor_ui | D005145 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | anatomy & histology |
| mesh[2].descriptor_name | Face |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D005145 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Face |
| mesh[4].qualifier_ui | Q000000981 |
| mesh[4].descriptor_ui | D059925 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | diagnostic imaging |
| mesh[4].descriptor_name | Anatomic Landmarks |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012984 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Software |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D021621 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Imaging, Three-Dimensional |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000465 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Algorithms |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008297 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Male |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D010781 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Photography |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D007091 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Image Processing, Computer-Assisted |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | Q000033 |
| mesh[14].descriptor_ui | D005145 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | anatomy & histology |
| mesh[14].descriptor_name | Face |
| mesh[15].qualifier_ui | Q000000981 |
| mesh[15].descriptor_ui | D005145 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | diagnostic imaging |
| mesh[15].descriptor_name | Face |
| mesh[16].qualifier_ui | Q000000981 |
| mesh[16].descriptor_ui | D059925 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | diagnostic imaging |
| mesh[16].descriptor_name | Anatomic Landmarks |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D012984 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Software |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D021621 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Imaging, Three-Dimensional |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000465 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Algorithms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D008297 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Male |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D010781 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Photography |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D007091 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Image Processing, Computer-Assisted |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D016571 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Neural Networks, Computer |
| mesh[26].qualifier_ui | Q000033 |
| mesh[26].descriptor_ui | D005145 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | anatomy & histology |
| mesh[26].descriptor_name | Face |
| mesh[27].qualifier_ui | Q000000981 |
| mesh[27].descriptor_ui | D005145 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | diagnostic imaging |
| mesh[27].descriptor_name | Face |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D021621 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Imaging, Three-Dimensional |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000465 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Algorithms |
| mesh[30].qualifier_ui | Q000033 |
| mesh[30].descriptor_ui | D059925 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | anatomy & histology |
| mesh[30].descriptor_name | Anatomic Landmarks |
| mesh[31].qualifier_ui | Q000000981 |
| mesh[31].descriptor_ui | D059925 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | diagnostic imaging |
| mesh[31].descriptor_name | Anatomic Landmarks |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D012984 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Software |
| mesh[33].qualifier_ui | Q000379 |
| mesh[33].descriptor_ui | D007091 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | methods |
| mesh[33].descriptor_name | Image Processing, Computer-Assisted |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005260 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Female |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008297 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Male |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D010781 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Photography |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D015203 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Reproducibility of Results |
| type | article |
| title | The accuracy of automated facial landmarking - a comparative study between Cliniface software and patch-based Convoluted Neural Network algorithm |
| biblio.issue | 2 |
| biblio.volume | 47 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10828 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Biometric Identification and Security |
| topics[2].id | https://openalex.org/T13953 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9283000230789185 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Digital Imaging in Medicine |
| is_xpac | False |
| apc_list.value | 2976 |
| apc_list.currency | GBP |
| apc_list.value_usd | 3650 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7148836851119995 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777904410 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5770794749259949 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[1].display_name | Software |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5188578367233276 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4632248878479004 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45729243755340576 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3515336513519287 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C199360897 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[6].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7148836851119995 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/software |
| keywords[1].score | 0.5770794749259949 |
| keywords[1].display_name | Software |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5188578367233276 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4632248878479004 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.45729243755340576 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3515336513519287 |
| keywords[5].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1093/ejo/cjaf009 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S64889221 |
| locations[0].source.issn | 0141-5387, 1460-2210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0141-5387 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Journal of Orthodontics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Journal of Orthodontics |
| locations[0].landing_page_url | https://doi.org/10.1093/ejo/cjaf009 |
| locations[1].id | pmid:40110937 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | European journal of orthodontics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40110937 |
| locations[2].id | pmh:oai:eprints.gla.ac.uk:347095 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400411 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Enlighten: Publications (The University of Glasgow) |
| locations[2].source.host_organization | https://openalex.org/I7882870 |
| locations[2].source.host_organization_name | University of Glasgow |
| locations[2].source.host_organization_lineage | https://openalex.org/I7882870 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | PeerReviewed |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://eprints.gla.ac.uk/view/author/51740.html>, |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11923742 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Eur J Orthod |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11923742 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5019429013 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2452-0364 |
| authorships[0].author.display_name | Bodore Al-baker |
| authorships[0].countries | QA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[0].affiliations[0].raw_affiliation_string | Orthodontic Department, Hamad Dental Centre, Hamad Medical corporation , Onaiza Service Road, P.O. Box 3050, Doha , |
| authorships[0].institutions[0].id | https://openalex.org/I49828101 |
| authorships[0].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[0].institutions[0].country_code | QA |
| authorships[0].institutions[0].display_name | Hamad Medical Corporation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bodore Al-baker |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Orthodontic Department, Hamad Dental Centre, Hamad Medical corporation , Onaiza Service Road, P.O. Box 3050, Doha , |
| authorships[1].author.id | https://openalex.org/A5033505489 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3471-7256 |
| authorships[1].author.display_name | Xiangyang Ju |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125671874, https://openalex.org/I2800201399 |
| authorships[1].affiliations[0].raw_affiliation_string | Medical Devices Unit, Department of Clinical Physics and Bioengineering, National Health Services of Greater Glasgow and Clyde , 378 Sauchiehall Street, Glasgow G2 3JZ , |
| authorships[1].institutions[0].id | https://openalex.org/I2800201399 |
| authorships[1].institutions[0].ror | https://ror.org/05kdz4d87 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2800201399 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | NHS Greater Glasgow and Clyde |
| authorships[1].institutions[1].id | https://openalex.org/I125671874 |
| authorships[1].institutions[1].ror | https://ror.org/02wnqcb97 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I125671874, https://openalex.org/I1311074006 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | National Health Service |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangyang Ju |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Medical Devices Unit, Department of Clinical Physics and Bioengineering, National Health Services of Greater Glasgow and Clyde , 378 Sauchiehall Street, Glasgow G2 3JZ , |
| authorships[2].author.id | https://openalex.org/A5033223825 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9914-6901 |
| authorships[2].author.display_name | Peter Mossey |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177639307, https://openalex.org/I4210111487 |
| authorships[2].affiliations[0].raw_affiliation_string | Dental Hospital and School, University of Dundee , Park Place, Dundee DD1 4HR , |
| authorships[2].institutions[0].id | https://openalex.org/I4210111487 |
| authorships[2].institutions[0].ror | https://ror.org/01ybj8n97 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800860831, https://openalex.org/I4210111487 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Dundee Dental Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I177639307 |
| authorships[2].institutions[1].ror | https://ror.org/03h2bxq36 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I177639307 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Dundee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peter Mossey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dental Hospital and School, University of Dundee , Park Place, Dundee DD1 4HR , |
| authorships[3].author.id | https://openalex.org/A5025522999 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2760-6008 |
| authorships[3].author.display_name | Ashraf Ayoub |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[3].affiliations[0].raw_affiliation_string | Scottish Craniofacial Research Group, Glasgow University Dental Hospital & School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow , 378 Sauchiehall Street, Glasgow G2 3JZ , |
| authorships[3].institutions[0].id | https://openalex.org/I7882870 |
| authorships[3].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Glasgow |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ashraf Ayoub |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Scottish Craniofacial Research Group, Glasgow University Dental Hospital & School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow , 378 Sauchiehall Street, Glasgow G2 3JZ , |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11923742 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The accuracy of automated facial landmarking - a comparative study between Cliniface software and patch-based Convoluted Neural Network algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2053286651, https://openalex.org/W2181743346, https://openalex.org/W2187401768, https://openalex.org/W2181413294, https://openalex.org/W2052122378, https://openalex.org/W2544423928, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11923742 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Eur J Orthod |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11923742 |
| primary_location.id | doi:10.1093/ejo/cjaf009 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S64889221 |
| primary_location.source.issn | 0141-5387, 1460-2210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0141-5387 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Journal of Orthodontics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Journal of Orthodontics |
| primary_location.landing_page_url | https://doi.org/10.1093/ejo/cjaf009 |
| publication_date | 2025-02-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2772821199, https://openalex.org/W2609007680, https://openalex.org/W3163578704, https://openalex.org/W1835843971, https://openalex.org/W2130428415, https://openalex.org/W2902256495, https://openalex.org/W2907562204, https://openalex.org/W2974444957, https://openalex.org/W3081692415, https://openalex.org/W4404792040, https://openalex.org/W4365136022, https://openalex.org/W2155760473, https://openalex.org/W3115937160, https://openalex.org/W7073922461, https://openalex.org/W2162144054, https://openalex.org/W2019014255, https://openalex.org/W1985555687, https://openalex.org/W2938417515, https://openalex.org/W2889800409, https://openalex.org/W2809254203, https://openalex.org/W1566413196, https://openalex.org/W3159476643, https://openalex.org/W4387211608, https://openalex.org/W3048566631, https://openalex.org/W3097903991, https://openalex.org/W4324148963, https://openalex.org/W2106378109, https://openalex.org/W2003931381, https://openalex.org/W3033434602, https://openalex.org/W3041972202, https://openalex.org/W4288350910, https://openalex.org/W4392917977, https://openalex.org/W2165860473 |
| referenced_works_count | 33 |
| abstract_inverted_index.8 | 235 |
| abstract_inverted_index.a | 317 |
| abstract_inverted_index.30 | 75 |
| abstract_inverted_index.3D | 11, 76, 110, 141, 306, 333 |
| abstract_inverted_index.an | 98 |
| abstract_inverted_index.at | 204 |
| abstract_inverted_index.by | 97, 192 |
| abstract_inverted_index.in | 52, 63, 237, 258, 272, 282, 340, 343 |
| abstract_inverted_index.is | 17, 29, 325, 338 |
| abstract_inverted_index.it | 263 |
| abstract_inverted_index.mm | 236 |
| abstract_inverted_index.of | 9, 21, 49, 91, 127, 143, 170, 178, 194, 219, 232, 268, 279, 305, 320, 331 |
| abstract_inverted_index.on | 74 |
| abstract_inverted_index.to | 166, 300 |
| abstract_inverted_index.± | 224 |
| abstract_inverted_index.CNN | 138, 153, 250, 314 |
| abstract_inverted_index.The | 69, 88, 124, 140, 173, 199, 214, 248, 277, 296, 312 |
| abstract_inverted_index.and | 118, 187, 308 |
| abstract_inverted_index.for | 24, 34, 85, 106, 206, 327 |
| abstract_inverted_index.has | 40 |
| abstract_inverted_index.its | 38, 341, 349 |
| abstract_inverted_index.mm, | 226 |
| abstract_inverted_index.not | 41 |
| abstract_inverted_index.one | 301, 303, 309 |
| abstract_inverted_index.out | 73 |
| abstract_inverted_index.set | 126, 203 |
| abstract_inverted_index.the | 7, 10, 18, 47, 55, 86, 92, 103, 107, 119, 128, 135, 144, 151, 156, 168, 176, 179, 183, 188, 195, 207, 210, 229, 240, 245, 260, 265, 269, 274, 284, 291, 328, 332 |
| abstract_inverted_index.two | 196 |
| abstract_inverted_index.was | 71, 94, 113, 146, 164, 202, 222, 252, 287, 298 |
| abstract_inverted_index.0.05 | 205 |
| abstract_inverted_index.1.53 | 225 |
| abstract_inverted_index.3.66 | 223 |
| abstract_inverted_index.Each | 109 |
| abstract_inverted_index.been | 42 |
| abstract_inverted_index.each | 159, 193 |
| abstract_inverted_index.face | 145 |
| abstract_inverted_index.into | 115, 148 |
| abstract_inverted_index.main | 15 |
| abstract_inverted_index.more | 233, 253 |
| abstract_inverted_index.ones | 190 |
| abstract_inverted_index.same | 125, 266, 275 |
| abstract_inverted_index.than | 234, 255, 290 |
| abstract_inverted_index.used | 84 |
| abstract_inverted_index.were | 83, 121, 131 |
| abstract_inverted_index.with | 54, 239 |
| abstract_inverted_index.(CNN) | 61 |
| abstract_inverted_index.Their | 14 |
| abstract_inverted_index.error | 218 |
| abstract_inverted_index.fully | 43 |
| abstract_inverted_index.image | 112, 142 |
| abstract_inverted_index.level | 201, 267 |
| abstract_inverted_index.study | 70, 297 |
| abstract_inverted_index.truth | 105 |
| abstract_inverted_index.twice | 96 |
| abstract_inverted_index.using | 134 |
| abstract_inverted_index.which | 101, 324, 347 |
| abstract_inverted_index.Neural | 59 |
| abstract_inverted_index.assess | 167 |
| abstract_inverted_index.bounds | 348 |
| abstract_inverted_index.error. | 247 |
| abstract_inverted_index.expert | 99 |
| abstract_inverted_index.facial | 12, 36, 65, 81, 111, 129, 261, 285, 334 |
| abstract_inverted_index.ground | 104 |
| abstract_inverted_index.groups | 304 |
| abstract_inverted_index.higher | 289 |
| abstract_inverted_index.manual | 89, 241, 270, 292 |
| abstract_inverted_index.method | 174 |
| abstract_inverted_index.patch. | 160 |
| abstract_inverted_index.twenty | 79 |
| abstract_inverted_index.within | 158 |
| abstract_inverted_index.Network | 60 |
| abstract_inverted_index.Partial | 161 |
| abstract_inverted_index.Results | 213 |
| abstract_inverted_index.Stomion | 243 |
| abstract_inverted_index.Subalar | 227 |
| abstract_inverted_index.allowed | 175 |
| abstract_inverted_index.applied | 165 |
| abstract_inverted_index.between | 182, 209 |
| abstract_inverted_index.carried | 72 |
| abstract_inverted_index.centre, | 302 |
| abstract_inverted_index.certain | 345 |
| abstract_inverted_index.images, | 307 |
| abstract_inverted_index.images. | 13, 335 |
| abstract_inverted_index.images; | 78 |
| abstract_inverted_index.largest | 230 |
| abstract_inverted_index.limited | 19, 299, 339 |
| abstract_inverted_index.overall | 215 |
| abstract_inverted_index.points. | 276 |
| abstract_inverted_index.reached | 264 |
| abstract_inverted_index.readily | 30 |
| abstract_inverted_index.routine | 25 |
| abstract_inverted_index.trained | 152 |
| abstract_inverted_index./Methods | 68 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 163 |
| abstract_inverted_index.Evaluate | 46 |
| abstract_inverted_index.accuracy | 20, 48, 169, 319, 342 |
| abstract_inverted_index.accurate | 254 |
| abstract_inverted_index.analysis | 8 |
| abstract_inverted_index.clinical | 26, 329, 350 |
| abstract_inverted_index.detected | 122, 133, 155, 185 |
| abstract_inverted_index.imported | 114 |
| abstract_inverted_index.landmark | 216, 346 |
| abstract_inverted_index.manually | 184 |
| abstract_inverted_index.measured | 211 |
| abstract_inverted_index.methods. | 198 |
| abstract_inverted_index.multiple | 149 |
| abstract_inverted_index.packages | 5 |
| abstract_inverted_index.patches, | 150 |
| abstract_inverted_index.provided | 316 |
| abstract_inverted_index.repeated | 95 |
| abstract_inverted_index.simplify | 6 |
| abstract_inverted_index.smallest | 246 |
| abstract_inverted_index.software | 4, 33, 51, 221, 257, 281, 337 |
| abstract_inverted_index.validity | 39 |
| abstract_inverted_index.Automatic | 2 |
| abstract_inverted_index.Cliniface | 28, 50, 116, 220, 256, 280, 336 |
| abstract_inverted_index.Euclidean | 180 |
| abstract_inverted_index.Materials | 67 |
| abstract_inverted_index.algorithm | 62, 154, 251, 315 |
| abstract_inverted_index.analysis. | 87, 108 |
| abstract_inverted_index.automated | 171, 197 |
| abstract_inverted_index.automatic | 35, 321 |
| abstract_inverted_index.available | 31 |
| abstract_inverted_index.detecting | 22, 259, 283, 344 |
| abstract_inverted_index.detection | 323 |
| abstract_inverted_index.developed | 56, 136 |
| abstract_inverted_index.distances | 181 |
| abstract_inverted_index.generated | 191 |
| abstract_inverted_index.landmarks | 23, 82, 93, 120, 130, 157, 186, 286, 322 |
| abstract_inverted_index.operator, | 100 |
| abstract_inverted_index.operator. | 310 |
| abstract_inverted_index.precision | 271 |
| abstract_inverted_index.software, | 117 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Convoluted | 58 |
| abstract_inverted_index.Objectives | 45 |
| abstract_inverted_index.Procrustes | 162 |
| abstract_inverted_index.algorithm. | 139 |
| abstract_inverted_index.anatomical | 80 |
| abstract_inverted_index.comparison | 53, 238 |
| abstract_inverted_index.considered | 102 |
| abstract_inverted_index.deficiency | 16 |
| abstract_inverted_index.distances. | 212 |
| abstract_inverted_index.evaluation | 330 |
| abstract_inverted_index.exhibiting | 228 |
| abstract_inverted_index.inaccuracy | 278 |
| abstract_inverted_index.landmarks, | 262 |
| abstract_inverted_index.landmarks. | 66 |
| abstract_inverted_index.precision. | 294 |
| abstract_inverted_index.subdivided | 147 |
| abstract_inverted_index.Conclusions | 311 |
| abstract_inverted_index.Limitations | 295 |
| abstract_inverted_index.differences | 208 |
| abstract_inverted_index.discrepancy | 231 |
| abstract_inverted_index.identifying | 64, 273 |
| abstract_inverted_index.landmarking | 3, 293 |
| abstract_inverted_index.measurement | 177 |
| abstract_inverted_index.open-access | 32 |
| abstract_inverted_index.patch-based | 57, 137, 249, 313 |
| abstract_inverted_index.application. | 351 |
| abstract_inverted_index.demonstrated | 244 |
| abstract_inverted_index.digitization | 90 |
| abstract_inverted_index.landmarking, | 37 |
| abstract_inverted_index.landmarking. | 172 |
| abstract_inverted_index.localization | 217 |
| abstract_inverted_index.photographic | 77 |
| abstract_inverted_index.satisfactory | 318, 326 |
| abstract_inverted_index.applications. | 27 |
| abstract_inverted_index.automatically | 132 |
| abstract_inverted_index.corresponding | 189 |
| abstract_inverted_index.digitization. | 242 |
| abstract_inverted_index.investigated. | 44 |
| abstract_inverted_index.significantly | 288 |
| abstract_inverted_index.significance | 200 |
| abstract_inverted_index.automatically. | 123 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.84884437 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |