The Age-Related Probability of Dying from COVID-19 among Those Infected: A Relative Survival Analysis Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.01.26.22269928
Background COVID-19 was first identified in Wuhan, the capital city of the province of Hubei in China. Due to the presentation of multiple symptoms at the same time, it is clinically important to understand the probability of dying from COVID-19 vs. the probability of dying from other causes. Methods Using data collected in Hubei that identified by age those who died of COVID-19 or its sequelae among the infected, we constructed a life table showing the conditional probability of dying at age x from COVID-19 and its sequela among those infected. Following the relative survival perspective, we also computed corresponding data for China that matched the format of the life table we constructed from the Hubei study. We then formed ratios of the 10-year conditional portability of dying at age x from COVID-19 for the Hubei COVID-19 victims to the ten-year conditional probability of dying at age x from all non-COVID-19 causes for those not infected by COVID-19 in China as a whole. Findings At every age, the conditional probability of dying from COVID-19 among those infected in Hubei is higher than the conditional probability of dying from all non-COVID-19 causes for China as a whole. Following a general age-related mortality pattern, the conditional probability of dying from COVID-19 from age 20 onward increases monotonically for those who are infected. Relative to the probability of dying in China from all other causes for those not infected, however, it declines monotonically from age 20 to age 70. Interpretation At younger ages the relative conditional probability of dying from CVOD-19 among the infected is substantially higher than it is for those infected who dying of all other causes and while staying higher at all ages, it declines monotonically with age. The monotonic decline in the ratio from age 20 to age 70 is a result of the age-related increase in the probability of dying from one or more of a number of competing causes, which, in the case at hand is manifested in the fact that non-COVID-19 deaths in China among the uninfected were generally increasing at a faster age-related rate than were the COVID-19 deaths to the infected in Hubei.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.01.26.22269928
- https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4210434592
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4210434592Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.01.26.22269928Digital Object Identifier
- Title
-
The Age-Related Probability of Dying from COVID-19 among Those Infected: A Relative Survival AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-01Full publication date if available
- Authors
-
David A. Swanson, Dudley L. Poston, Steven G. Krantz, Arni S. R. Srinivasa RaoList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.01.26.22269928Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdfDirect OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Life table, Conditional probability, China, Demography, Medicine, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Geography, Statistics, Mathematics, Environmental health, Internal medicine, Disease, Population, Infectious disease (medical specialty), Sociology, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4210434592 |
|---|---|
| doi | https://doi.org/10.1101/2022.01.26.22269928 |
| ids.doi | https://doi.org/10.1101/2022.01.26.22269928 |
| ids.openalex | https://openalex.org/W4210434592 |
| fwci | 0.17434144 |
| type | preprint |
| title | The Age-Related Probability of Dying from COVID-19 among Those Infected: A Relative Survival Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.970300018787384 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7004401683807373 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C56479603 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5754936337471008 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q632184 |
| concepts[1].display_name | Life table |
| concepts[2].id | https://openalex.org/C44492722 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5736282467842102 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q327069 |
| concepts[2].display_name | Conditional probability |
| concepts[3].id | https://openalex.org/C191935318 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5328797698020935 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[3].display_name | China |
| concepts[4].id | https://openalex.org/C149923435 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5289711356163025 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[4].display_name | Demography |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4539659917354584 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C3007834351 |
| concepts[6].level | 5 |
| concepts[6].score | 0.41103053092956543 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[6].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2723495364189148 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24999776482582092 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14734864234924316 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C99454951 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14539706707000732 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[10].display_name | Environmental health |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1393355429172516 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1263464093208313 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C2908647359 |
| concepts[13].level | 2 |
| concepts[13].score | 0.08480507135391235 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[13].display_name | Population |
| concepts[14].id | https://openalex.org/C524204448 |
| concepts[14].level | 3 |
| concepts[14].score | 0.05632719397544861 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[14].display_name | Infectious disease (medical specialty) |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.7004401683807373 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/life-table |
| keywords[1].score | 0.5754936337471008 |
| keywords[1].display_name | Life table |
| keywords[2].id | https://openalex.org/keywords/conditional-probability |
| keywords[2].score | 0.5736282467842102 |
| keywords[2].display_name | Conditional probability |
| keywords[3].id | https://openalex.org/keywords/china |
| keywords[3].score | 0.5328797698020935 |
| keywords[3].display_name | China |
| keywords[4].id | https://openalex.org/keywords/demography |
| keywords[4].score | 0.5289711356163025 |
| keywords[4].display_name | Demography |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.4539659917354584 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[6].score | 0.41103053092956543 |
| keywords[6].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.2723495364189148 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.24999776482582092 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.14734864234924316 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/environmental-health |
| keywords[10].score | 0.14539706707000732 |
| keywords[10].display_name | Environmental health |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.1393355429172516 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/disease |
| keywords[12].score | 0.1263464093208313 |
| keywords[12].display_name | Disease |
| keywords[13].id | https://openalex.org/keywords/population |
| keywords[13].score | 0.08480507135391235 |
| keywords[13].display_name | Population |
| keywords[14].id | https://openalex.org/keywords/infectious-disease |
| keywords[14].score | 0.05632719397544861 |
| keywords[14].display_name | Infectious disease (medical specialty) |
| language | en |
| locations[0].id | doi:10.1101/2022.01.26.22269928 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.01.26.22269928 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045893266 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4284-9478 |
| authorships[0].author.display_name | David A. Swanson |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I103635307 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Sociology, University of California Riverside, Riverside, CA USA 9252 |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I201448701 |
| authorships[0].affiliations[1].raw_affiliation_string | Center for Studies in Demography & Ecology, University of Washington, Seattle, WA USA 98195 |
| authorships[0].institutions[0].id | https://openalex.org/I103635307 |
| authorships[0].institutions[0].ror | https://ror.org/03nawhv43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I103635307 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Riverside |
| authorships[0].institutions[1].id | https://openalex.org/I201448701 |
| authorships[0].institutions[1].ror | https://ror.org/00cvxb145 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I201448701 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Washington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David A. Swanson |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Center for Studies in Demography & Ecology, University of Washington, Seattle, WA USA 98195, Department of Sociology, University of California Riverside, Riverside, CA USA 9252 |
| authorships[1].author.id | https://openalex.org/A5060437286 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dudley L. Poston |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Sociology, Texas A & M University, College Station, TX USA 7784 |
| authorships[1].institutions[0].id | https://openalex.org/I91045830 |
| authorships[1].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Texas A&M University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dudley Poston |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Sociology, Texas A & M University, College Station, TX USA 7784 |
| authorships[2].author.id | https://openalex.org/A5068741053 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0902-2014 |
| authorships[2].author.display_name | Steven G. Krantz |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204465549 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, Washington University in St. Louis, Campus Box 116, One Brookings Drive, St. Louis, Missouri 63130 USA |
| authorships[2].institutions[0].id | https://openalex.org/I204465549 |
| authorships[2].institutions[0].ror | https://ror.org/01yc7t268 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204465549 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Washington University in St. Louis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Steven G. Krantz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, Washington University in St. Louis, Campus Box 116, One Brookings Drive, St. Louis, Missouri 63130 USA |
| authorships[3].author.id | https://openalex.org/A5030012542 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3685-6989 |
| authorships[3].author.display_name | Arni S. R. Srinivasa Rao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25041050 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratory for Theory and Mathematical Modeling, Department of Medicine-Division of Infectious Diseases, Medical College of Georgia, 1120 1th Street, AE2040, Augusta, GA 30912, U.S.A. |
| authorships[3].institutions[0].id | https://openalex.org/I25041050 |
| authorships[3].institutions[0].ror | https://ror.org/012mef835 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25041050 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Augusta University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Arni S.R. Srinivasa Rao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Laboratory for Theory and Mathematical Modeling, Department of Medicine-Division of Infectious Diseases, Medical College of Georgia, 1120 1th Street, AE2040, Augusta, GA 30912, U.S.A. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Age-Related Probability of Dying from COVID-19 among Those Infected: A Relative Survival Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.970300018787384 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W4206669628, https://openalex.org/W4205317059, https://openalex.org/W3176864053, https://openalex.org/W3198183218, https://openalex.org/W4205810683, https://openalex.org/W4224279380, https://openalex.org/W4206548596, https://openalex.org/W4206651655, https://openalex.org/W4292098121, https://openalex.org/W3084498529 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.01.26.22269928 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.01.26.22269928 |
| primary_location.id | doi:10.1101/2022.01.26.22269928 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/02/01/2022.01.26.22269928.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.01.26.22269928 |
| publication_date | 2022-02-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1965717050, https://openalex.org/W3173626412, https://openalex.org/W3173881169, https://openalex.org/W3196780279, https://openalex.org/W3002108456, https://openalex.org/W2409301357, https://openalex.org/W2889637378, https://openalex.org/W2039049306, https://openalex.org/W2598189907, https://openalex.org/W2321362088, https://openalex.org/W3017550043, https://openalex.org/W3183431599, https://openalex.org/W3001118548, https://openalex.org/W3210231302, https://openalex.org/W2482649146, https://openalex.org/W2138904898, https://openalex.org/W3130240926, https://openalex.org/W6803964248, https://openalex.org/W2031867991, https://openalex.org/W997247147, https://openalex.org/W624399449, https://openalex.org/W3113252034, https://openalex.org/W1708080052, https://openalex.org/W6960110969, https://openalex.org/W3093326720, https://openalex.org/W3035719951, https://openalex.org/W3133420366, https://openalex.org/W3013967887, https://openalex.org/W2109588006, https://openalex.org/W2138830327, https://openalex.org/W3175945524, https://openalex.org/W2162493182 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 72, 162, 195, 198, 302, 318, 346 |
| abstract_inverted_index.x | 83, 131, 148 |
| abstract_inverted_index.20 | 212, 243, 297 |
| abstract_inverted_index.70 | 300 |
| abstract_inverted_index.At | 165, 248 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.as | 161, 194 |
| abstract_inverted_index.at | 25, 81, 129, 146, 281, 327, 345 |
| abstract_inverted_index.by | 57, 157 |
| abstract_inverted_index.in | 6, 16, 53, 159, 178, 227, 292, 308, 324, 331, 337, 358 |
| abstract_inverted_index.is | 30, 180, 262, 267, 301, 329 |
| abstract_inverted_index.it | 29, 238, 266, 284 |
| abstract_inverted_index.of | 11, 14, 22, 37, 44, 62, 79, 108, 122, 127, 144, 171, 186, 206, 225, 255, 273, 304, 311, 317, 320 |
| abstract_inverted_index.or | 64, 315 |
| abstract_inverted_index.to | 19, 33, 139, 222, 244, 298, 355 |
| abstract_inverted_index.we | 70, 97, 112 |
| abstract_inverted_index.70. | 246 |
| abstract_inverted_index.Due | 18 |
| abstract_inverted_index.The | 289 |
| abstract_inverted_index.age | 58, 82, 130, 147, 211, 242, 245, 296, 299 |
| abstract_inverted_index.all | 150, 189, 230, 274, 282 |
| abstract_inverted_index.and | 86, 277 |
| abstract_inverted_index.are | 219 |
| abstract_inverted_index.for | 102, 134, 153, 192, 216, 233, 268 |
| abstract_inverted_index.its | 65, 87 |
| abstract_inverted_index.not | 155, 235 |
| abstract_inverted_index.one | 314 |
| abstract_inverted_index.the | 8, 12, 20, 26, 35, 42, 68, 76, 93, 106, 109, 115, 123, 135, 140, 168, 183, 203, 223, 251, 260, 293, 305, 309, 325, 332, 340, 352, 356 |
| abstract_inverted_index.vs. | 41 |
| abstract_inverted_index.was | 3 |
| abstract_inverted_index.who | 60, 218, 271 |
| abstract_inverted_index.age, | 167 |
| abstract_inverted_index.age. | 288 |
| abstract_inverted_index.ages | 250 |
| abstract_inverted_index.also | 98 |
| abstract_inverted_index.case | 326 |
| abstract_inverted_index.city | 10 |
| abstract_inverted_index.data | 51, 101 |
| abstract_inverted_index.died | 61 |
| abstract_inverted_index.fact | 333 |
| abstract_inverted_index.from | 39, 46, 84, 114, 132, 149, 173, 188, 208, 210, 229, 241, 257, 295, 313 |
| abstract_inverted_index.hand | 328 |
| abstract_inverted_index.life | 73, 110 |
| abstract_inverted_index.more | 316 |
| abstract_inverted_index.rate | 349 |
| abstract_inverted_index.same | 27 |
| abstract_inverted_index.than | 182, 265, 350 |
| abstract_inverted_index.that | 55, 104, 334 |
| abstract_inverted_index.then | 119 |
| abstract_inverted_index.were | 342, 351 |
| abstract_inverted_index.with | 287 |
| abstract_inverted_index.China | 103, 160, 193, 228, 338 |
| abstract_inverted_index.Hubei | 15, 54, 116, 136, 179 |
| abstract_inverted_index.Using | 50 |
| abstract_inverted_index.ages, | 283 |
| abstract_inverted_index.among | 67, 89, 175, 259, 339 |
| abstract_inverted_index.dying | 38, 45, 80, 128, 145, 172, 187, 207, 226, 256, 272, 312 |
| abstract_inverted_index.every | 166 |
| abstract_inverted_index.first | 4 |
| abstract_inverted_index.other | 47, 231, 275 |
| abstract_inverted_index.ratio | 294 |
| abstract_inverted_index.table | 74, 111 |
| abstract_inverted_index.those | 59, 90, 154, 176, 217, 234, 269 |
| abstract_inverted_index.time, | 28 |
| abstract_inverted_index.while | 278 |
| abstract_inverted_index.China. | 17 |
| abstract_inverted_index.Hubei. | 359 |
| abstract_inverted_index.Wuhan, | 7 |
| abstract_inverted_index.causes | 152, 191, 232, 276 |
| abstract_inverted_index.deaths | 336, 354 |
| abstract_inverted_index.faster | 347 |
| abstract_inverted_index.format | 107 |
| abstract_inverted_index.formed | 120 |
| abstract_inverted_index.higher | 181, 264, 280 |
| abstract_inverted_index.number | 319 |
| abstract_inverted_index.onward | 213 |
| abstract_inverted_index.ratios | 121 |
| abstract_inverted_index.result | 303 |
| abstract_inverted_index.study. | 117 |
| abstract_inverted_index.which, | 323 |
| abstract_inverted_index.whole. | 163, 196 |
| abstract_inverted_index.10-year | 124 |
| abstract_inverted_index.CVOD-19 | 258 |
| abstract_inverted_index.Methods | 49 |
| abstract_inverted_index.capital | 9 |
| abstract_inverted_index.causes, | 322 |
| abstract_inverted_index.causes. | 48 |
| abstract_inverted_index.decline | 291 |
| abstract_inverted_index.general | 199 |
| abstract_inverted_index.matched | 105 |
| abstract_inverted_index.sequela | 88 |
| abstract_inverted_index.showing | 75 |
| abstract_inverted_index.staying | 279 |
| abstract_inverted_index.victims | 138 |
| abstract_inverted_index.younger | 249 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 2, 40, 63, 85, 133, 137, 158, 174, 209, 353 |
| abstract_inverted_index.Findings | 164 |
| abstract_inverted_index.Relative | 221 |
| abstract_inverted_index.computed | 99 |
| abstract_inverted_index.declines | 239, 285 |
| abstract_inverted_index.however, | 237 |
| abstract_inverted_index.increase | 307 |
| abstract_inverted_index.infected | 156, 177, 261, 270, 357 |
| abstract_inverted_index.multiple | 23 |
| abstract_inverted_index.pattern, | 202 |
| abstract_inverted_index.province | 13 |
| abstract_inverted_index.relative | 94, 252 |
| abstract_inverted_index.sequelae | 66 |
| abstract_inverted_index.survival | 95 |
| abstract_inverted_index.symptoms | 24 |
| abstract_inverted_index.ten-year | 141 |
| abstract_inverted_index.Following | 92, 197 |
| abstract_inverted_index.collected | 52 |
| abstract_inverted_index.competing | 321 |
| abstract_inverted_index.generally | 343 |
| abstract_inverted_index.important | 32 |
| abstract_inverted_index.increases | 214 |
| abstract_inverted_index.infected, | 69, 236 |
| abstract_inverted_index.infected. | 91, 220 |
| abstract_inverted_index.monotonic | 290 |
| abstract_inverted_index.mortality | 201 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.clinically | 31 |
| abstract_inverted_index.identified | 5, 56 |
| abstract_inverted_index.increasing | 344 |
| abstract_inverted_index.manifested | 330 |
| abstract_inverted_index.understand | 34 |
| abstract_inverted_index.uninfected | 341 |
| abstract_inverted_index.age-related | 200, 306, 348 |
| abstract_inverted_index.conditional | 77, 125, 142, 169, 184, 204, 253 |
| abstract_inverted_index.constructed | 71, 113 |
| abstract_inverted_index.portability | 126 |
| abstract_inverted_index.probability | 36, 43, 78, 143, 170, 185, 205, 224, 254, 310 |
| abstract_inverted_index.non-COVID-19 | 151, 190, 335 |
| abstract_inverted_index.perspective, | 96 |
| abstract_inverted_index.presentation | 21 |
| abstract_inverted_index.corresponding | 100 |
| abstract_inverted_index.monotonically | 215, 240, 286 |
| abstract_inverted_index.substantially | 263 |
| abstract_inverted_index.Interpretation | 247 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5045893266 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I103635307, https://openalex.org/I201448701 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.37656696 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |