The Application of Image Recognition Technology Based on Deep Learning in Data Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.12694/scpe.v26i3.4235
To address the challenge of achieving high recognition accuracy across various image types, the author advocates for applying deep learning-based image recognition technology in data analysis research. The author first uses convolutional neural networks to train and process the raw laser image big data, extract image features, and set a threshold for pre segmentation to complete image preprocessing; then use the regularized least squares method to complete the laser image pattern recognition process and achieve image pattern differentiation; finally, construct an experimental section and analyze the application effect of this method. The experimental results show that the recognition rate of the preset target images for different types of images is stable at over 96%, the recognition error rate is stable at less than 2%, and the image recognition time is within 15 seconds, indicating that the method has good application effects. This method has a shorter recognition time and higher efficiency, providing impetus for the improvement of laser image analysis and processing technology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.12694/scpe.v26i3.4235
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409073364
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409073364Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12694/scpe.v26i3.4235Digital Object Identifier
- Title
-
The Application of Image Recognition Technology Based on Deep Learning in Data AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-01Full publication date if available
- Authors
-
Wei Shi, Kai Guo, Weilan Liu, Jingwei GuoList of authors in order
- Landing page
-
https://doi.org/10.12694/scpe.v26i3.4235Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.12694/scpe.v26i3.4235Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Deep learning, Image (mathematics), Pattern recognition (psychology), Computer vision, Machine learning, Data mining, Data scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409073364 |
|---|---|
| doi | https://doi.org/10.12694/scpe.v26i3.4235 |
| ids.doi | https://doi.org/10.12694/scpe.v26i3.4235 |
| ids.openalex | https://openalex.org/W4409073364 |
| fwci | 0.0 |
| type | article |
| title | The Application of Image Recognition Technology Based on Deep Learning in Data Analysis |
| biblio.issue | 3 |
| biblio.volume | 26 |
| biblio.last_page | 1465 |
| biblio.first_page | 1457 |
| topics[0].id | https://openalex.org/T14139 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.19449999928474426 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1403 |
| topics[0].subfield.display_name | Business and International Management |
| topics[0].display_name | E-commerce and Technology Innovations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.858647346496582 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6212606430053711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5547126531600952 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5188944935798645 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.439777672290802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39444810152053833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3554648160934448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3233519196510315 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.320710152387619 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.858647346496582 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6212606430053711 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5547126531600952 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.5188944935798645 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.439777672290802 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.39444810152053833 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3554648160934448 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3233519196510315 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.320710152387619 |
| keywords[8].display_name | Data science |
| language | en |
| locations[0].id | doi:10.12694/scpe.v26i3.4235 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764391171 |
| locations[0].source.issn | 1895-1767 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1895-1767 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Scalable Computing Practice and Experience |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scalable Computing: Practice and Experience |
| locations[0].landing_page_url | https://doi.org/10.12694/scpe.v26i3.4235 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065838119 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8930-4492 |
| authorships[0].author.display_name | Wei Shi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Shi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086789683 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6665-6980 |
| authorships[1].author.display_name | Kai Guo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kai Guo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077963238 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Weilan Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weilan Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013231544 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4336-9863 |
| authorships[3].author.display_name | Jingwei Guo |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jingwei Guo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.12694/scpe.v26i3.4235 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Application of Image Recognition Technology Based on Deep Learning in Data Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14139 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.19449999928474426 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1403 |
| primary_topic.subfield.display_name | Business and International Management |
| primary_topic.display_name | E-commerce and Technology Innovations |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2731899572, https://openalex.org/W4230611425, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W4383066092, https://openalex.org/W3215138031, https://openalex.org/W2804383999, https://openalex.org/W4380075502 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.12694/scpe.v26i3.4235 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764391171 |
| best_oa_location.source.issn | 1895-1767 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1895-1767 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Scalable Computing Practice and Experience |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scalable Computing: Practice and Experience |
| best_oa_location.landing_page_url | https://doi.org/10.12694/scpe.v26i3.4235 |
| primary_location.id | doi:10.12694/scpe.v26i3.4235 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764391171 |
| primary_location.source.issn | 1895-1767 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1895-1767 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Scalable Computing Practice and Experience |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scalable Computing: Practice and Experience |
| primary_location.landing_page_url | https://doi.org/10.12694/scpe.v26i3.4235 |
| publication_date | 2025-04-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 144 |
| abstract_inverted_index.15 | 131 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.at | 111, 120 |
| abstract_inverted_index.in | 23 |
| abstract_inverted_index.is | 109, 118, 129 |
| abstract_inverted_index.of | 4, 88, 99, 107, 156 |
| abstract_inverted_index.to | 34, 54, 65 |
| abstract_inverted_index.2%, | 123 |
| abstract_inverted_index.The | 27, 91 |
| abstract_inverted_index.and | 36, 47, 73, 83, 124, 148, 160 |
| abstract_inverted_index.big | 42 |
| abstract_inverted_index.for | 16, 51, 104, 153 |
| abstract_inverted_index.has | 137, 143 |
| abstract_inverted_index.pre | 52 |
| abstract_inverted_index.raw | 39 |
| abstract_inverted_index.set | 48 |
| abstract_inverted_index.the | 2, 13, 38, 60, 67, 85, 96, 100, 114, 125, 135, 154 |
| abstract_inverted_index.use | 59 |
| abstract_inverted_index.96%, | 113 |
| abstract_inverted_index.This | 141 |
| abstract_inverted_index.data | 24 |
| abstract_inverted_index.deep | 18 |
| abstract_inverted_index.good | 138 |
| abstract_inverted_index.high | 6 |
| abstract_inverted_index.less | 121 |
| abstract_inverted_index.over | 112 |
| abstract_inverted_index.rate | 98, 117 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.than | 122 |
| abstract_inverted_index.that | 95, 134 |
| abstract_inverted_index.then | 58 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.time | 128, 147 |
| abstract_inverted_index.uses | 30 |
| abstract_inverted_index.data, | 43 |
| abstract_inverted_index.error | 116 |
| abstract_inverted_index.first | 29 |
| abstract_inverted_index.image | 11, 20, 41, 45, 56, 69, 75, 126, 158 |
| abstract_inverted_index.laser | 40, 68, 157 |
| abstract_inverted_index.least | 62 |
| abstract_inverted_index.train | 35 |
| abstract_inverted_index.types | 106 |
| abstract_inverted_index.across | 9 |
| abstract_inverted_index.author | 14, 28 |
| abstract_inverted_index.effect | 87 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.images | 103, 108 |
| abstract_inverted_index.method | 64, 136, 142 |
| abstract_inverted_index.neural | 32 |
| abstract_inverted_index.preset | 101 |
| abstract_inverted_index.stable | 110, 119 |
| abstract_inverted_index.target | 102 |
| abstract_inverted_index.types, | 12 |
| abstract_inverted_index.within | 130 |
| abstract_inverted_index.achieve | 74 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.analyze | 84 |
| abstract_inverted_index.extract | 44 |
| abstract_inverted_index.impetus | 152 |
| abstract_inverted_index.method. | 90 |
| abstract_inverted_index.pattern | 70, 76 |
| abstract_inverted_index.process | 37, 72 |
| abstract_inverted_index.results | 93 |
| abstract_inverted_index.section | 82 |
| abstract_inverted_index.shorter | 145 |
| abstract_inverted_index.squares | 63 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.accuracy | 8 |
| abstract_inverted_index.analysis | 25, 159 |
| abstract_inverted_index.applying | 17 |
| abstract_inverted_index.complete | 55, 66 |
| abstract_inverted_index.effects. | 140 |
| abstract_inverted_index.finally, | 78 |
| abstract_inverted_index.networks | 33 |
| abstract_inverted_index.seconds, | 132 |
| abstract_inverted_index.achieving | 5 |
| abstract_inverted_index.advocates | 15 |
| abstract_inverted_index.challenge | 3 |
| abstract_inverted_index.construct | 79 |
| abstract_inverted_index.different | 105 |
| abstract_inverted_index.features, | 46 |
| abstract_inverted_index.providing | 151 |
| abstract_inverted_index.research. | 26 |
| abstract_inverted_index.threshold | 50 |
| abstract_inverted_index.indicating | 133 |
| abstract_inverted_index.processing | 161 |
| abstract_inverted_index.technology | 22 |
| abstract_inverted_index.application | 86, 139 |
| abstract_inverted_index.efficiency, | 150 |
| abstract_inverted_index.improvement | 155 |
| abstract_inverted_index.recognition | 7, 21, 71, 97, 115, 127, 146 |
| abstract_inverted_index.regularized | 61 |
| abstract_inverted_index.technology. | 162 |
| abstract_inverted_index.experimental | 81, 92 |
| abstract_inverted_index.segmentation | 53 |
| abstract_inverted_index.convolutional | 31 |
| abstract_inverted_index.learning-based | 19 |
| abstract_inverted_index.preprocessing; | 57 |
| abstract_inverted_index.differentiation; | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14431657 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |