The application research of deep neural networks in colonic polyp segmentation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2093277/v1
Background: In the study of medical images segmentation, U-Net is a good choice with better performance. But it will cause some problems such as gradient problems or information loss. Methods: In this paper, we introduce a new model based on such an encoder-decoder structure. We mixed a full connection and encoder output in per layer and we add an axial attention to solve gradient problem and keep the connection with pixel from long distance. After pooling, we add a module which has three atrous Convolution processes with different expansion rate and a non-local Self attention to increase the feeling field and fix the problem of losing spatial information. In decoder part, we put a dual channel gate to point out 'what' and 'where' feature we need by the union of Channel Attention and Spatial Attention. Results: We use 4 public dataSets are CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB and CVC-T. We compared more than 10 groups other different models with these 4 group dataSets and marked some evaluating indicators such as mIou, mDice and so on. We also did some ablation experiments to verify that our model structure is reasonable and effective. Conclusions: The comparative training of 12 models in 4 different datasets verifies the feasibility and the good effectiveness of the proposed ideas. We also did some ablation experiments to verify that our model structure is reasonable and effective. The basic structure of the encoder decoder in semantic segmentation has been greatly improved.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2093277/v1
- https://www.researchsquare.com/article/rs-2093277/latest.pdf
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304143730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304143730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2093277/v1Digital Object Identifier
- Title
-
The application research of deep neural networks in colonic polyp segmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-10Full publication date if available
- Authors
-
Jun Li, Fang Wang, Haima Yang, Lihua Qiu, Jin Liu, Le Fu, Dawei Zhang, Weibin Hong, Yeye SongList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2093277/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2093277/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2093277/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Segmentation, Pooling, Encoder, Artificial intelligence, Convolution (computer science), Feature (linguistics), Channel (broadcasting), Point (geometry), Pattern recognition (psychology), Pixel, Convolutional neural network, Field (mathematics), Artificial neural network, Mathematics, Computer network, Linguistics, Geometry, Pure mathematics, Operating system, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304143730 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2093277/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2093277/v1 |
| ids.openalex | https://openalex.org/W4304143730 |
| fwci | 0.0 |
| type | preprint |
| title | The application research of deep neural networks in colonic polyp segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.6559000015258789 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.6518999934196472 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7203769087791443 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6257084012031555 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C70437156 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5976489186286926 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[2].display_name | Pooling |
| concepts[3].id | https://openalex.org/C118505674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5731444358825684 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[3].display_name | Encoder |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.553020179271698 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C45347329 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5322705507278442 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[5].display_name | Convolution (computer science) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4742290675640106 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C127162648 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4654885530471802 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[7].display_name | Channel (broadcasting) |
| concepts[8].id | https://openalex.org/C28719098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4650266170501709 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[8].display_name | Point (geometry) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4475041627883911 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C160633673 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43481189012527466 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[10].display_name | Pixel |
| concepts[11].id | https://openalex.org/C81363708 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42643892765045166 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[11].display_name | Convolutional neural network |
| concepts[12].id | https://openalex.org/C9652623 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4205324351787567 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[12].display_name | Field (mathematics) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3470911383628845 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15407618880271912 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C31258907 |
| concepts[15].level | 1 |
| concepts[15].score | 0.08375024795532227 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[15].display_name | Computer network |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C202444582 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[18].display_name | Pure mathematics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7203769087791443 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6257084012031555 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/pooling |
| keywords[2].score | 0.5976489186286926 |
| keywords[2].display_name | Pooling |
| keywords[3].id | https://openalex.org/keywords/encoder |
| keywords[3].score | 0.5731444358825684 |
| keywords[3].display_name | Encoder |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.553020179271698 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/convolution |
| keywords[5].score | 0.5322705507278442 |
| keywords[5].display_name | Convolution (computer science) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4742290675640106 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/channel |
| keywords[7].score | 0.4654885530471802 |
| keywords[7].display_name | Channel (broadcasting) |
| keywords[8].id | https://openalex.org/keywords/point |
| keywords[8].score | 0.4650266170501709 |
| keywords[8].display_name | Point (geometry) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4475041627883911 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/pixel |
| keywords[10].score | 0.43481189012527466 |
| keywords[10].display_name | Pixel |
| keywords[11].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[11].score | 0.42643892765045166 |
| keywords[11].display_name | Convolutional neural network |
| keywords[12].id | https://openalex.org/keywords/field |
| keywords[12].score | 0.4205324351787567 |
| keywords[12].display_name | Field (mathematics) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.3470911383628845 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.15407618880271912 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/computer-network |
| keywords[15].score | 0.08375024795532227 |
| keywords[15].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2093277/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2093277/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2093277/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100434730 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4566-9536 |
| authorships[0].author.display_name | Jun Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[0].institutions[0].id | https://openalex.org/I148128674 |
| authorships[0].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun LI |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[1].author.id | https://openalex.org/A5100321492 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-8892-6173 |
| authorships[1].author.display_name | Fang Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[1].institutions[0].id | https://openalex.org/I148128674 |
| authorships[1].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fang Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[2].author.id | https://openalex.org/A5042290525 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haima Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[2].institutions[0].id | https://openalex.org/I148128674 |
| authorships[2].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haima Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[3].author.id | https://openalex.org/A5101404589 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6946-3412 |
| authorships[3].author.display_name | Lihua Qiu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183067930, https://openalex.org/I2800570007 |
| authorships[3].affiliations[0].raw_affiliation_string | Renji Hospital, Shanghai Jiao Tong University School of Medicine,200127, China |
| authorships[3].institutions[0].id | https://openalex.org/I2800570007 |
| authorships[3].institutions[0].ror | https://ror.org/03ypbx660 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800570007 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Renji Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I183067930 |
| authorships[3].institutions[1].ror | https://ror.org/0220qvk04 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I183067930 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shanghai Jiao Tong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lihua Qiu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Renji Hospital, Shanghai Jiao Tong University School of Medicine,200127, China |
| authorships[4].author.id | https://openalex.org/A5100642607 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7249-698X |
| authorships[4].author.display_name | Jin Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141962983 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China |
| authorships[4].institutions[0].id | https://openalex.org/I141962983 |
| authorships[4].institutions[0].ror | https://ror.org/0557b9y08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141962983 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanghai University of Engineering Science |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jin Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China |
| authorships[5].author.id | https://openalex.org/A5112638348 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Le Fu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210153623 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210153623 |
| authorships[5].institutions[0].ror | https://ror.org/05myyzn85 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210153623 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai First Maternity and Infant Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Le Fu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China |
| authorships[6].author.id | https://openalex.org/A5100379743 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0841-7826 |
| authorships[6].author.display_name | Dawei Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[6].institutions[0].id | https://openalex.org/I148128674 |
| authorships[6].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dawei Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[7].author.id | https://openalex.org/A5108770749 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Weibin Hong |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[7].institutions[0].id | https://openalex.org/I148128674 |
| authorships[7].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Weibin Hong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[8].author.id | https://openalex.org/A5017216774 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Yeye Song |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| authorships[8].institutions[0].id | https://openalex.org/I148128674 |
| authorships[8].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Yeye Song |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2093277/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The application research of deep neural networks in colonic polyp segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.6559000015258789 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2953234277, https://openalex.org/W2626256601, https://openalex.org/W2900413183, https://openalex.org/W147410782, https://openalex.org/W3022252430, https://openalex.org/W3103989898, https://openalex.org/W4287804464, https://openalex.org/W2810679507, https://openalex.org/W2964954556, https://openalex.org/W3019910406 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2093277/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2093277/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2093277/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2093277/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2093277/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2093277/v1 |
| publication_date | 2022-10-10 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 139, 159, 198 |
| abstract_inverted_index.a | 11, 36, 47, 79, 92, 114 |
| abstract_inverted_index.10 | 152 |
| abstract_inverted_index.12 | 195 |
| abstract_inverted_index.In | 2, 31, 109 |
| abstract_inverted_index.We | 45, 137, 148, 174, 212 |
| abstract_inverted_index.an | 42, 59 |
| abstract_inverted_index.as | 24, 168 |
| abstract_inverted_index.by | 127 |
| abstract_inverted_index.in | 53, 197, 235 |
| abstract_inverted_index.is | 10, 186, 224 |
| abstract_inverted_index.it | 18 |
| abstract_inverted_index.of | 5, 105, 130, 194, 208, 231 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.so | 172 |
| abstract_inverted_index.to | 62, 96, 118, 180, 218 |
| abstract_inverted_index.we | 34, 57, 77, 112, 125 |
| abstract_inverted_index.But | 17 |
| abstract_inverted_index.The | 191, 228 |
| abstract_inverted_index.add | 58, 78 |
| abstract_inverted_index.and | 50, 56, 66, 91, 101, 122, 133, 146, 162, 171, 188, 204, 226 |
| abstract_inverted_index.are | 142 |
| abstract_inverted_index.did | 176, 214 |
| abstract_inverted_index.fix | 102 |
| abstract_inverted_index.has | 82, 238 |
| abstract_inverted_index.new | 37 |
| abstract_inverted_index.on. | 173 |
| abstract_inverted_index.our | 183, 221 |
| abstract_inverted_index.out | 120 |
| abstract_inverted_index.per | 54 |
| abstract_inverted_index.put | 113 |
| abstract_inverted_index.the | 3, 68, 98, 103, 128, 202, 205, 209, 232 |
| abstract_inverted_index.use | 138 |
| abstract_inverted_index.Self | 94 |
| abstract_inverted_index.also | 175, 213 |
| abstract_inverted_index.been | 239 |
| abstract_inverted_index.dual | 115 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.full | 48 |
| abstract_inverted_index.gate | 117 |
| abstract_inverted_index.good | 12, 206 |
| abstract_inverted_index.keep | 67 |
| abstract_inverted_index.long | 73 |
| abstract_inverted_index.more | 150 |
| abstract_inverted_index.need | 126 |
| abstract_inverted_index.rate | 90 |
| abstract_inverted_index.some | 21, 164, 177, 215 |
| abstract_inverted_index.such | 23, 41, 167 |
| abstract_inverted_index.than | 151 |
| abstract_inverted_index.that | 182, 220 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.will | 19 |
| abstract_inverted_index.with | 14, 70, 87, 157 |
| abstract_inverted_index.After | 75 |
| abstract_inverted_index.U-Net | 9 |
| abstract_inverted_index.axial | 60 |
| abstract_inverted_index.based | 39 |
| abstract_inverted_index.basic | 229 |
| abstract_inverted_index.cause | 20 |
| abstract_inverted_index.field | 100 |
| abstract_inverted_index.group | 160 |
| abstract_inverted_index.layer | 55 |
| abstract_inverted_index.loss. | 29 |
| abstract_inverted_index.mDice | 170 |
| abstract_inverted_index.mIou, | 169 |
| abstract_inverted_index.mixed | 46 |
| abstract_inverted_index.model | 38, 184, 222 |
| abstract_inverted_index.other | 154 |
| abstract_inverted_index.part, | 111 |
| abstract_inverted_index.pixel | 71 |
| abstract_inverted_index.point | 119 |
| abstract_inverted_index.solve | 63 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.these | 158 |
| abstract_inverted_index.three | 83 |
| abstract_inverted_index.union | 129 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.'what' | 121 |
| abstract_inverted_index.CVC-T. | 147 |
| abstract_inverted_index.atrous | 84 |
| abstract_inverted_index.better | 15 |
| abstract_inverted_index.choice | 13 |
| abstract_inverted_index.groups | 153 |
| abstract_inverted_index.ideas. | 211 |
| abstract_inverted_index.images | 7 |
| abstract_inverted_index.losing | 106 |
| abstract_inverted_index.marked | 163 |
| abstract_inverted_index.models | 156, 196 |
| abstract_inverted_index.module | 80 |
| abstract_inverted_index.output | 52 |
| abstract_inverted_index.paper, | 33 |
| abstract_inverted_index.public | 140 |
| abstract_inverted_index.verify | 181, 219 |
| abstract_inverted_index.'where' | 123 |
| abstract_inverted_index.Channel | 131 |
| abstract_inverted_index.Spatial | 134 |
| abstract_inverted_index.channel | 116 |
| abstract_inverted_index.decoder | 110, 234 |
| abstract_inverted_index.encoder | 51, 233 |
| abstract_inverted_index.feature | 124 |
| abstract_inverted_index.feeling | 99 |
| abstract_inverted_index.greatly | 240 |
| abstract_inverted_index.medical | 6 |
| abstract_inverted_index.problem | 65, 104 |
| abstract_inverted_index.spatial | 107 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Methods: | 30 |
| abstract_inverted_index.Results: | 136 |
| abstract_inverted_index.ablation | 178, 216 |
| abstract_inverted_index.compared | 149 |
| abstract_inverted_index.dataSets | 141, 161 |
| abstract_inverted_index.datasets | 200 |
| abstract_inverted_index.gradient | 25, 64 |
| abstract_inverted_index.increase | 97 |
| abstract_inverted_index.pooling, | 76 |
| abstract_inverted_index.problems | 22, 26 |
| abstract_inverted_index.proposed | 210 |
| abstract_inverted_index.semantic | 236 |
| abstract_inverted_index.training | 193 |
| abstract_inverted_index.verifies | 201 |
| abstract_inverted_index.Attention | 132 |
| abstract_inverted_index.attention | 61, 95 |
| abstract_inverted_index.different | 88, 155, 199 |
| abstract_inverted_index.distance. | 74 |
| abstract_inverted_index.expansion | 89 |
| abstract_inverted_index.improved. | 241 |
| abstract_inverted_index.introduce | 35 |
| abstract_inverted_index.non-local | 93 |
| abstract_inverted_index.processes | 86 |
| abstract_inverted_index.structure | 185, 223, 230 |
| abstract_inverted_index.Attention. | 135 |
| abstract_inverted_index.connection | 49, 69 |
| abstract_inverted_index.effective. | 189, 227 |
| abstract_inverted_index.evaluating | 165 |
| abstract_inverted_index.indicators | 166 |
| abstract_inverted_index.reasonable | 187, 225 |
| abstract_inverted_index.structure. | 44 |
| abstract_inverted_index.Background: | 1 |
| abstract_inverted_index.CVC-ColonDB | 145 |
| abstract_inverted_index.Convolution | 85 |
| abstract_inverted_index.Kvasir-SEG, | 144 |
| abstract_inverted_index.comparative | 192 |
| abstract_inverted_index.experiments | 179, 217 |
| abstract_inverted_index.feasibility | 203 |
| abstract_inverted_index.information | 28 |
| abstract_inverted_index.Conclusions: | 190 |
| abstract_inverted_index.information. | 108 |
| abstract_inverted_index.performance. | 16 |
| abstract_inverted_index.segmentation | 237 |
| abstract_inverted_index.CVC-ClinicDB, | 143 |
| abstract_inverted_index.effectiveness | 207 |
| abstract_inverted_index.segmentation, | 8 |
| abstract_inverted_index.encoder-decoder | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.19720345 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |