The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2023.emnlp-main.255
Chain-of-Thought (CoT) prompting enables large language models to solve complex reasoning problems by generating intermediate steps. However, confined by its inherent single-pass and sequential generation process, CoT heavily relies on the initial decisions, causing errors in early steps to accumulate and impact the final answers. In contrast, humans adopt recursive thinking when tackling complex reasoning problems, i.e. iteratively breaking the original problem into approachable sub-problems and aggregating their answers to resolve the original one. Inspired by the human cognitive process, we propose SOCRATIC QUESTIONING, a divide-and-conquer style algorithm that mimics the recursive thinking process. Specifically, SOCRATIC QUESTIONING leverages large language models to raise and answer sub-questions until collecting enough information to tackle the original question. Unlike CoT, SOCRATIC QUESTIONING explicitly navigates the thinking space, stimulates effective recursive thinking, and is more robust towards errors in the thinking process. Extensive experiments on several complex reasoning tasks, including MMLU, MATH, LogiQA, and visual question-answering demonstrate significant performance improvements over the state-of-the-art prompting methods, such as CoT, and Tree-of-Thought. The qualitative analysis clearly shows that the intermediate reasoning steps elicited by SOCRATIC QUESTIONING are similar to humans’ recursively thinking process of complex reasoning problems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2023.emnlp-main.255
- https://aclanthology.org/2023.emnlp-main.255.pdf
- OA Status
- gold
- Cited By
- 14
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389518764
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389518764Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2023.emnlp-main.255Digital Object Identifier
- Title
-
The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Jingyuan Qi, Zhiyang Xu, Ying Shen, Min‐Qian Liu, Di Jin, Qifan Wang, Lifu HuangList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2023.emnlp-main.255Publisher landing page
- PDF URL
-
https://aclanthology.org/2023.emnlp-main.255.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2023.emnlp-main.255.pdfDirect OA link when available
- Concepts
-
Socratic method, Socratic questioning, Computer science, Process (computing), Cognitive science, Qualitative reasoning, Artificial intelligence, Epistemology, Theoretical computer science, Programming language, Psychology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389518764 |
|---|---|
| doi | https://doi.org/10.18653/v1/2023.emnlp-main.255 |
| ids.doi | https://doi.org/10.18653/v1/2023.emnlp-main.255 |
| ids.openalex | https://openalex.org/W4389518764 |
| fwci | 3.57620043 |
| type | article |
| title | The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9876000285148621 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.927299976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2801541 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8543308973312378 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q839475 |
| concepts[0].display_name | Socratic method |
| concepts[1].id | https://openalex.org/C174594037 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7271593809127808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4926165 |
| concepts[1].display_name | Socratic questioning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6604050993919373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C98045186 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4814873933792114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[3].display_name | Process (computing) |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4520551562309265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| concepts[5].id | https://openalex.org/C83725634 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4515409469604492 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7268699 |
| concepts[5].display_name | Qualitative reasoning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43929606676101685 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C111472728 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3533756732940674 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[7].display_name | Epistemology |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32522809505462646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18928521871566772 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1748276948928833 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07824119925498962 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/socratic-method |
| keywords[0].score | 0.8543308973312378 |
| keywords[0].display_name | Socratic method |
| keywords[1].id | https://openalex.org/keywords/socratic-questioning |
| keywords[1].score | 0.7271593809127808 |
| keywords[1].display_name | Socratic questioning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6604050993919373 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/process |
| keywords[3].score | 0.4814873933792114 |
| keywords[3].display_name | Process (computing) |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.4520551562309265 |
| keywords[4].display_name | Cognitive science |
| keywords[5].id | https://openalex.org/keywords/qualitative-reasoning |
| keywords[5].score | 0.4515409469604492 |
| keywords[5].display_name | Qualitative reasoning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.43929606676101685 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/epistemology |
| keywords[7].score | 0.3533756732940674 |
| keywords[7].display_name | Epistemology |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.32522809505462646 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.18928521871566772 |
| keywords[9].display_name | Programming language |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.1748276948928833 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/philosophy |
| keywords[11].score | 0.07824119925498962 |
| keywords[11].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.18653/v1/2023.emnlp-main.255 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2023.emnlp-main.255.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.255 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065738809 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-2747-2903 |
| authorships[0].author.display_name | Jingyuan Qi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[0].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[0].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Amazon (United States) |
| authorships[0].institutions[1].id | https://openalex.org/I859038795 |
| authorships[0].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Virginia Tech |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jingyuan Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[1].author.id | https://openalex.org/A5113079567 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhiyang Xu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[1].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[1].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Amazon (United States) |
| authorships[1].institutions[1].id | https://openalex.org/I859038795 |
| authorships[1].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Virginia Tech |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiyang Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[2].author.id | https://openalex.org/A5074799043 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3220-904X |
| authorships[2].author.display_name | Ying Shen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[2].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[2].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[2].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Amazon (United States) |
| authorships[2].institutions[1].id | https://openalex.org/I859038795 |
| authorships[2].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Virginia Tech |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying Shen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[3].author.id | https://openalex.org/A5059659163 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1954-6241 |
| authorships[3].author.display_name | Min‐Qian Liu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[3].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[3].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[3].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Amazon (United States) |
| authorships[3].institutions[1].id | https://openalex.org/I859038795 |
| authorships[3].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Virginia Tech |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Minqian Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[4].author.id | https://openalex.org/A5112574959 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-4646-5220 |
| authorships[4].author.display_name | Di Jin |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[4].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[4].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[4].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Amazon (United States) |
| authorships[4].institutions[1].id | https://openalex.org/I859038795 |
| authorships[4].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Virginia Tech |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Di Jin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[5].author.id | https://openalex.org/A5055007304 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5304-7975 |
| authorships[5].author.display_name | Qifan Wang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[5].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[5].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[5].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Amazon (United States) |
| authorships[5].institutions[1].id | https://openalex.org/I859038795 |
| authorships[5].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Virginia Tech |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qifan Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[6].author.id | https://openalex.org/A5042819803 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2743-7718 |
| authorships[6].author.display_name | Lifu Huang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1311688040, https://openalex.org/I859038795 |
| authorships[6].affiliations[0].raw_affiliation_string | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| authorships[6].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[6].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Amazon (United States) |
| authorships[6].institutions[1].id | https://openalex.org/I859038795 |
| authorships[6].institutions[1].ror | https://ror.org/02smfhw86 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I859038795 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Virginia Tech |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lifu Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Virginia Tech ♡ Amazon Inc. ♣ Meta AI |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2023.emnlp-main.255.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2547614469, https://openalex.org/W3200908540, https://openalex.org/W2305008762, https://openalex.org/W3094247468, https://openalex.org/W2005068702, https://openalex.org/W3024688691, https://openalex.org/W189565757, https://openalex.org/W4388152744, https://openalex.org/W2794630542, https://openalex.org/W2061974820 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2023.emnlp-main.255 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2023.emnlp-main.255.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.255 |
| primary_location.id | doi:10.18653/v1/2023.emnlp-main.255 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2023.emnlp-main.255.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.255 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4283026156, https://openalex.org/W4285428875, https://openalex.org/W4375958700, https://openalex.org/W4225303417, https://openalex.org/W3092945658, https://openalex.org/W4319793767, https://openalex.org/W4327526607, https://openalex.org/W4224308101, https://openalex.org/W2963609889, https://openalex.org/W2947312908, https://openalex.org/W4221143046, https://openalex.org/W2250958092, https://openalex.org/W4385570412, https://openalex.org/W3016211260, https://openalex.org/W4323717348, https://openalex.org/W4318718936, https://openalex.org/W4366566341, https://openalex.org/W4307079201, https://openalex.org/W4385573161, https://openalex.org/W4389523957, https://openalex.org/W4376312115, https://openalex.org/W4312846625, https://openalex.org/W4285429195, https://openalex.org/W4225591000, https://openalex.org/W4385569922, https://openalex.org/W4226352076, https://openalex.org/W4229005866, https://openalex.org/W4292779060, https://openalex.org/W4385572980, https://openalex.org/W3134642945, https://openalex.org/W4322718191, https://openalex.org/W4377130677, https://openalex.org/W2949134692, https://openalex.org/W4361806892, https://openalex.org/W3121904249, https://openalex.org/W3199958362, https://openalex.org/W4368755685, https://openalex.org/W4296001058, https://openalex.org/W3034457116, https://openalex.org/W4313483544, https://openalex.org/W3159959439, https://openalex.org/W3100436891, https://openalex.org/W4221161695 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 84 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.as | 162 |
| abstract_inverted_index.by | 12, 18, 75, 177 |
| abstract_inverted_index.in | 35, 134 |
| abstract_inverted_index.is | 129 |
| abstract_inverted_index.of | 187 |
| abstract_inverted_index.on | 29, 140 |
| abstract_inverted_index.to | 7, 38, 69, 101, 110, 182 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.CoT | 26 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.and | 22, 40, 65, 103, 128, 149, 164 |
| abstract_inverted_index.are | 180 |
| abstract_inverted_index.its | 19 |
| abstract_inverted_index.the | 30, 42, 59, 71, 76, 90, 112, 121, 135, 157, 172 |
| abstract_inverted_index.CoT, | 116, 163 |
| abstract_inverted_index.i.e. | 56 |
| abstract_inverted_index.into | 62 |
| abstract_inverted_index.more | 130 |
| abstract_inverted_index.one. | 73 |
| abstract_inverted_index.over | 156 |
| abstract_inverted_index.such | 161 |
| abstract_inverted_index.that | 88, 171 |
| abstract_inverted_index.when | 51 |
| abstract_inverted_index.(CoT) | 1 |
| abstract_inverted_index.MATH, | 147 |
| abstract_inverted_index.MMLU, | 146 |
| abstract_inverted_index.adopt | 48 |
| abstract_inverted_index.early | 36 |
| abstract_inverted_index.final | 43 |
| abstract_inverted_index.human | 77 |
| abstract_inverted_index.large | 4, 98 |
| abstract_inverted_index.raise | 102 |
| abstract_inverted_index.shows | 170 |
| abstract_inverted_index.solve | 8 |
| abstract_inverted_index.steps | 37, 175 |
| abstract_inverted_index.style | 86 |
| abstract_inverted_index.their | 67 |
| abstract_inverted_index.until | 106 |
| abstract_inverted_index.Unlike | 115 |
| abstract_inverted_index.answer | 104 |
| abstract_inverted_index.enough | 108 |
| abstract_inverted_index.errors | 34, 133 |
| abstract_inverted_index.humans | 47 |
| abstract_inverted_index.impact | 41 |
| abstract_inverted_index.mimics | 89 |
| abstract_inverted_index.models | 6, 100 |
| abstract_inverted_index.relies | 28 |
| abstract_inverted_index.robust | 131 |
| abstract_inverted_index.space, | 123 |
| abstract_inverted_index.steps. | 15 |
| abstract_inverted_index.tackle | 111 |
| abstract_inverted_index.tasks, | 144 |
| abstract_inverted_index.visual | 150 |
| abstract_inverted_index.LogiQA, | 148 |
| abstract_inverted_index.answers | 68 |
| abstract_inverted_index.causing | 33 |
| abstract_inverted_index.clearly | 169 |
| abstract_inverted_index.complex | 9, 53, 142, 188 |
| abstract_inverted_index.enables | 3 |
| abstract_inverted_index.heavily | 27 |
| abstract_inverted_index.initial | 31 |
| abstract_inverted_index.problem | 61 |
| abstract_inverted_index.process | 186 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.resolve | 70 |
| abstract_inverted_index.several | 141 |
| abstract_inverted_index.similar | 181 |
| abstract_inverted_index.towards | 132 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Inspired | 74 |
| abstract_inverted_index.SOCRATIC | 82, 95, 117, 178 |
| abstract_inverted_index.analysis | 168 |
| abstract_inverted_index.answers. | 44 |
| abstract_inverted_index.breaking | 58 |
| abstract_inverted_index.confined | 17 |
| abstract_inverted_index.elicited | 176 |
| abstract_inverted_index.inherent | 20 |
| abstract_inverted_index.language | 5, 99 |
| abstract_inverted_index.methods, | 160 |
| abstract_inverted_index.original | 60, 72, 113 |
| abstract_inverted_index.problems | 11 |
| abstract_inverted_index.process, | 25, 79 |
| abstract_inverted_index.process. | 93, 137 |
| abstract_inverted_index.tackling | 52 |
| abstract_inverted_index.thinking | 50, 92, 122, 136, 185 |
| abstract_inverted_index.Extensive | 138 |
| abstract_inverted_index.algorithm | 87 |
| abstract_inverted_index.cognitive | 78 |
| abstract_inverted_index.contrast, | 46 |
| abstract_inverted_index.effective | 125 |
| abstract_inverted_index.humans’ | 183 |
| abstract_inverted_index.including | 145 |
| abstract_inverted_index.leverages | 97 |
| abstract_inverted_index.navigates | 120 |
| abstract_inverted_index.problems, | 55 |
| abstract_inverted_index.problems. | 190 |
| abstract_inverted_index.prompting | 2, 159 |
| abstract_inverted_index.question. | 114 |
| abstract_inverted_index.reasoning | 10, 54, 143, 174, 189 |
| abstract_inverted_index.recursive | 49, 91, 126 |
| abstract_inverted_index.thinking, | 127 |
| abstract_inverted_index.accumulate | 39 |
| abstract_inverted_index.collecting | 107 |
| abstract_inverted_index.decisions, | 32 |
| abstract_inverted_index.explicitly | 119 |
| abstract_inverted_index.generating | 13 |
| abstract_inverted_index.generation | 24 |
| abstract_inverted_index.sequential | 23 |
| abstract_inverted_index.stimulates | 124 |
| abstract_inverted_index.QUESTIONING | 96, 118, 179 |
| abstract_inverted_index.aggregating | 66 |
| abstract_inverted_index.demonstrate | 152 |
| abstract_inverted_index.experiments | 139 |
| abstract_inverted_index.information | 109 |
| abstract_inverted_index.iteratively | 57 |
| abstract_inverted_index.performance | 154 |
| abstract_inverted_index.qualitative | 167 |
| abstract_inverted_index.recursively | 184 |
| abstract_inverted_index.significant | 153 |
| abstract_inverted_index.single-pass | 21 |
| abstract_inverted_index.QUESTIONING, | 83 |
| abstract_inverted_index.approachable | 63 |
| abstract_inverted_index.improvements | 155 |
| abstract_inverted_index.intermediate | 14, 173 |
| abstract_inverted_index.sub-problems | 64 |
| abstract_inverted_index.Specifically, | 94 |
| abstract_inverted_index.sub-questions | 105 |
| abstract_inverted_index.Chain-of-Thought | 0 |
| abstract_inverted_index.Tree-of-Thought. | 165 |
| abstract_inverted_index.state-of-the-art | 158 |
| abstract_inverted_index.divide-and-conquer | 85 |
| abstract_inverted_index.question-answering | 151 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.92745147 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |