The bounds of meta-analytics and an alternative method Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4178/epih.e2024016
OBJECTIVES: Meta-analysis is a statistical appraisal of the data analytic implications of published articles (Y), estimating parameters including the odds ratio and relative risk. This information is helpful for evaluating the significance of the findings. The Higgins I2 index is often used to measure heterogeneity among studies. The objectives of this article are to amend the Higgins I2 index score in a novel and innovative way and to make it more useful in practice.METHODS: Heterogeneity among study populations can be affected by many sources, including the sample size and study design. They influence the Cochran Q score and, thus, the Higgins I2 score. In this regard, the I2 score is not an absolute indicator of heterogeneity. Q changes by bound as Y increases unboundedly. An innovative methodology is devised to show the conditional and unconditional probability structures.RESULTS: Various properties are derived, including showing that a zero correlation between Q and Y does not necessarily mean that they are independent. A new alternative statistic, S2, is derived and applied to mild cognitive impairment and coronavirus disease 2019 vaccination for meta-analysis.CONCLUSIONS: A hidden shortcoming of the Higgins I2 index is overcome in this article by amending the Higgins I2 score. The usefulness of the proposed methodology is illustrated using 2 examples. The findings have potential health policy implications.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.4178/epih.e2024016
- https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390667832
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390667832Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4178/epih.e2024016Digital Object Identifier
- Title
-
The bounds of meta-analytics and an alternative methodWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-07Full publication date if available
- Authors
-
Ramalingam Shanmugam, Mohammad Tabatabai, Derek Wilus, Karan P. SinghList of authors in order
- Landing page
-
https://doi.org/10.4178/epih.e2024016Publisher landing page
- PDF URL
-
https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdfDirect OA link when available
- Concepts
-
Medicine, Analytics, Meta-analysis, Medical physics, Data science, Internal medicine, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390667832 |
|---|---|
| doi | https://doi.org/10.4178/epih.e2024016 |
| ids.doi | https://doi.org/10.4178/epih.e2024016 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38228087 |
| ids.openalex | https://openalex.org/W4390667832 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000453 |
| mesh[1].descriptor_ui | D000086382 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | epidemiology |
| mesh[1].descriptor_name | COVID-19 |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D060825 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Cognitive Dysfunction |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000453 |
| mesh[4].descriptor_ui | D000086382 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | epidemiology |
| mesh[4].descriptor_name | COVID-19 |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D060825 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Cognitive Dysfunction |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000453 |
| mesh[7].descriptor_ui | D000086382 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | epidemiology |
| mesh[7].descriptor_name | COVID-19 |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D060825 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Cognitive Dysfunction |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000453 |
| mesh[10].descriptor_ui | D000086382 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | epidemiology |
| mesh[10].descriptor_name | COVID-19 |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D060825 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Cognitive Dysfunction |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000453 |
| mesh[13].descriptor_ui | D000086382 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | epidemiology |
| mesh[13].descriptor_name | COVID-19 |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D060825 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Cognitive Dysfunction |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000453 |
| mesh[16].descriptor_ui | D000086382 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | epidemiology |
| mesh[16].descriptor_name | COVID-19 |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D060825 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Cognitive Dysfunction |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000453 |
| mesh[19].descriptor_ui | D000086382 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | epidemiology |
| mesh[19].descriptor_name | COVID-19 |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D060825 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Cognitive Dysfunction |
| type | review |
| title | The bounds of meta-analytics and an alternative method |
| awards[0].id | https://openalex.org/G2297021134 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | RCMI MD007586 |
| awards[0].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 46 |
| biblio.last_page | e2024016 |
| biblio.first_page | e2024016 |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9491990804672241 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6619905233383179 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C95190672 |
| concepts[2].level | 2 |
| concepts[2].score | 0.568581223487854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[2].display_name | Meta-analysis |
| concepts[3].id | https://openalex.org/C19527891 |
| concepts[3].level | 1 |
| concepts[3].score | 0.322060227394104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[3].display_name | Medical physics |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.27375030517578125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.20206448435783386 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.9491990804672241 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.6619905233383179 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/meta-analysis |
| keywords[2].score | 0.568581223487854 |
| keywords[2].display_name | Meta-analysis |
| keywords[3].id | https://openalex.org/keywords/medical-physics |
| keywords[3].score | 0.322060227394104 |
| keywords[3].display_name | Medical physics |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.27375030517578125 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.20206448435783386 |
| keywords[5].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.4178/epih.e2024016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S149504884 |
| locations[0].source.issn | 2092-7193 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2092-7193 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Epidemiology and Health |
| locations[0].source.host_organization | https://openalex.org/P4310319525 |
| locations[0].source.host_organization_name | Korean Society of Epidemiology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319525 |
| locations[0].source.host_organization_lineage_names | Korean Society of Epidemiology |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Epidemiology and Health |
| locations[0].landing_page_url | https://doi.org/10.4178/epih.e2024016 |
| locations[1].id | pmid:38228087 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Epidemiology and health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38228087 |
| locations[2].id | pmh:oai:doaj.org/article:228b4cdfb6f041549521e4d2039fc041 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Epidemiology and Health, Vol 46 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/228b4cdfb6f041549521e4d2039fc041 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11040225 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Epidemiol Health |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11040225 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5084561111 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3388-1014 |
| authorships[0].author.display_name | Ramalingam Shanmugam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13511017 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Health Administration Texas State University San Marcos, TX 78666, USA |
| authorships[0].institutions[0].id | https://openalex.org/I13511017 |
| authorships[0].institutions[0].ror | https://ror.org/05h9q1g27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13511017 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Texas State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramalingam Shanmugam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Health Administration Texas State University San Marcos, TX 78666, USA |
| authorships[1].author.id | https://openalex.org/A5053753287 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1631-5264 |
| authorships[1].author.display_name | Mohammad Tabatabai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118073183 |
| authorships[1].affiliations[0].raw_affiliation_string | Meharry Medical College School of Graduate Studies and Research Nashville, TN 37208, USA |
| authorships[1].institutions[0].id | https://openalex.org/I118073183 |
| authorships[1].institutions[0].ror | https://ror.org/00k63dq23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I118073183 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Meharry Medical College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammad Tabatabai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Meharry Medical College School of Graduate Studies and Research Nashville, TN 37208, USA |
| authorships[2].author.id | https://openalex.org/A5008264723 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Derek Wilus |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118073183 |
| authorships[2].affiliations[0].raw_affiliation_string | Meharry Medical College School of Graduate Studies and Research Nashville, TN 37208, USA |
| authorships[2].institutions[0].id | https://openalex.org/I118073183 |
| authorships[2].institutions[0].ror | https://ror.org/00k63dq23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I118073183 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Meharry Medical College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Derek Wilus |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Meharry Medical College School of Graduate Studies and Research Nashville, TN 37208, USA |
| authorships[3].author.id | https://openalex.org/A5043999741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1841-846X |
| authorships[3].author.display_name | Karan P. Singh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I118073183 |
| authorships[3].affiliations[0].raw_affiliation_string | Meharry Medical College, Nashville, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I221716585 |
| authorships[3].affiliations[1].raw_affiliation_string | The University of Texas at Tyler, Tyler, Texas, United States |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I13511017 |
| authorships[3].affiliations[2].raw_affiliation_string | Texas State University, San Marcos, United States |
| authorships[3].institutions[0].id | https://openalex.org/I118073183 |
| authorships[3].institutions[0].ror | https://ror.org/00k63dq23 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I118073183 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Meharry Medical College |
| authorships[3].institutions[1].id | https://openalex.org/I13511017 |
| authorships[3].institutions[1].ror | https://ror.org/05h9q1g27 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I13511017 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Texas State University |
| authorships[3].institutions[2].id | https://openalex.org/I221716585 |
| authorships[3].institutions[2].ror | https://ror.org/01azfw069 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I221716585 |
| authorships[3].institutions[2].country_code | US |
| authorships[3].institutions[2].display_name | The University of Texas at Tyler |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Karan P. Singh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Meharry Medical College, Nashville, United States, Texas State University, San Marcos, United States, The University of Texas at Tyler, Tyler, Texas, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The bounds of meta-analytics and an alternative method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725, https://openalex.org/W2148612803 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.4178/epih.e2024016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S149504884 |
| best_oa_location.source.issn | 2092-7193 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2092-7193 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Epidemiology and Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310319525 |
| best_oa_location.source.host_organization_name | Korean Society of Epidemiology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319525 |
| best_oa_location.source.host_organization_lineage_names | Korean Society of Epidemiology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Epidemiology and Health |
| best_oa_location.landing_page_url | https://doi.org/10.4178/epih.e2024016 |
| primary_location.id | doi:10.4178/epih.e2024016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S149504884 |
| primary_location.source.issn | 2092-7193 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2092-7193 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Epidemiology and Health |
| primary_location.source.host_organization | https://openalex.org/P4310319525 |
| primary_location.source.host_organization_name | Korean Society of Epidemiology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319525 |
| primary_location.source.host_organization_lineage_names | Korean Society of Epidemiology |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.e-epih.org/upload/pdf/epih-e2024016-AOP.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Epidemiology and Health |
| primary_location.landing_page_url | https://doi.org/10.4178/epih.e2024016 |
| publication_date | 2024-01-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4309288163, https://openalex.org/W4206044337, https://openalex.org/W4321786928, https://openalex.org/W4283398884, https://openalex.org/W4313415100, https://openalex.org/W4200185182, https://openalex.org/W2570555403, https://openalex.org/W3189898324, https://openalex.org/W4296260606, https://openalex.org/W4288053281, https://openalex.org/W3215181496, https://openalex.org/W3164219348, https://openalex.org/W4313360542, https://openalex.org/W3217275157, https://openalex.org/W4281868010, https://openalex.org/W4300656629, https://openalex.org/W3120069157, https://openalex.org/W3119833633, https://openalex.org/W4282834821, https://openalex.org/W4319297191, https://openalex.org/W4212874447, https://openalex.org/W4232319858, https://openalex.org/W4317727190, https://openalex.org/W3205427315, https://openalex.org/W4282835718, https://openalex.org/W4220991018, https://openalex.org/W3210275190, https://openalex.org/W4206945484, https://openalex.org/W4313608862, https://openalex.org/W4323971971, https://openalex.org/W3210624200, https://openalex.org/W2122839539, https://openalex.org/W2125435699, https://openalex.org/W4226161253 |
| referenced_works_count | 34 |
| abstract_inverted_index.2 | 207 |
| abstract_inverted_index.A | 159, 179 |
| abstract_inverted_index.Q | 95, 116, 148 |
| abstract_inverted_index.Y | 121, 150 |
| abstract_inverted_index.a | 3, 61, 144 |
| abstract_inverted_index.An | 124 |
| abstract_inverted_index.I2 | 37, 57, 101, 107, 185, 196 |
| abstract_inverted_index.In | 103 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.as | 120 |
| abstract_inverted_index.be | 79 |
| abstract_inverted_index.by | 81, 118, 192 |
| abstract_inverted_index.in | 60, 72, 189 |
| abstract_inverted_index.is | 2, 26, 39, 109, 127, 164, 187, 204 |
| abstract_inverted_index.it | 69 |
| abstract_inverted_index.of | 6, 11, 32, 49, 114, 182, 200 |
| abstract_inverted_index.to | 42, 53, 67, 129, 168 |
| abstract_inverted_index.S2, | 163 |
| abstract_inverted_index.The | 35, 47, 198, 209 |
| abstract_inverted_index.and | 21, 63, 66, 88, 133, 149, 166, 172 |
| abstract_inverted_index.are | 52, 139, 157 |
| abstract_inverted_index.can | 78 |
| abstract_inverted_index.for | 28, 177 |
| abstract_inverted_index.new | 160 |
| abstract_inverted_index.not | 110, 152 |
| abstract_inverted_index.the | 7, 18, 30, 33, 55, 85, 93, 99, 106, 131, 183, 194, 201 |
| abstract_inverted_index.way | 65 |
| abstract_inverted_index.(Y), | 14 |
| abstract_inverted_index.2019 | 175 |
| abstract_inverted_index.They | 91 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.and, | 97 |
| abstract_inverted_index.data | 8 |
| abstract_inverted_index.does | 151 |
| abstract_inverted_index.have | 211 |
| abstract_inverted_index.make | 68 |
| abstract_inverted_index.many | 82 |
| abstract_inverted_index.mean | 154 |
| abstract_inverted_index.mild | 169 |
| abstract_inverted_index.more | 70 |
| abstract_inverted_index.odds | 19 |
| abstract_inverted_index.show | 130 |
| abstract_inverted_index.size | 87 |
| abstract_inverted_index.that | 143, 155 |
| abstract_inverted_index.they | 156 |
| abstract_inverted_index.this | 50, 104, 190 |
| abstract_inverted_index.used | 41 |
| abstract_inverted_index.zero | 145 |
| abstract_inverted_index.amend | 54 |
| abstract_inverted_index.among | 45, 75 |
| abstract_inverted_index.bound | 119 |
| abstract_inverted_index.index | 38, 58, 186 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.often | 40 |
| abstract_inverted_index.ratio | 20 |
| abstract_inverted_index.risk. | 23 |
| abstract_inverted_index.score | 59, 96, 108 |
| abstract_inverted_index.study | 76, 89 |
| abstract_inverted_index.thus, | 98 |
| abstract_inverted_index.using | 206 |
| abstract_inverted_index.health | 213 |
| abstract_inverted_index.hidden | 180 |
| abstract_inverted_index.policy | 214 |
| abstract_inverted_index.sample | 86 |
| abstract_inverted_index.score. | 102, 197 |
| abstract_inverted_index.useful | 71 |
| abstract_inverted_index.Cochran | 94 |
| abstract_inverted_index.Higgins | 36, 56, 100, 184, 195 |
| abstract_inverted_index.Various | 137 |
| abstract_inverted_index.applied | 167 |
| abstract_inverted_index.article | 51, 191 |
| abstract_inverted_index.between | 147 |
| abstract_inverted_index.changes | 117 |
| abstract_inverted_index.derived | 165 |
| abstract_inverted_index.design. | 90 |
| abstract_inverted_index.devised | 128 |
| abstract_inverted_index.disease | 174 |
| abstract_inverted_index.helpful | 27 |
| abstract_inverted_index.measure | 43 |
| abstract_inverted_index.regard, | 105 |
| abstract_inverted_index.showing | 142 |
| abstract_inverted_index.absolute | 112 |
| abstract_inverted_index.affected | 80 |
| abstract_inverted_index.amending | 193 |
| abstract_inverted_index.analytic | 9 |
| abstract_inverted_index.articles | 13 |
| abstract_inverted_index.derived, | 140 |
| abstract_inverted_index.findings | 210 |
| abstract_inverted_index.overcome | 188 |
| abstract_inverted_index.proposed | 202 |
| abstract_inverted_index.relative | 22 |
| abstract_inverted_index.sources, | 83 |
| abstract_inverted_index.studies. | 46 |
| abstract_inverted_index.appraisal | 5 |
| abstract_inverted_index.cognitive | 170 |
| abstract_inverted_index.examples. | 208 |
| abstract_inverted_index.findings. | 34 |
| abstract_inverted_index.including | 17, 84, 141 |
| abstract_inverted_index.increases | 122 |
| abstract_inverted_index.indicator | 113 |
| abstract_inverted_index.influence | 92 |
| abstract_inverted_index.potential | 212 |
| abstract_inverted_index.published | 12 |
| abstract_inverted_index.estimating | 15 |
| abstract_inverted_index.evaluating | 29 |
| abstract_inverted_index.impairment | 171 |
| abstract_inverted_index.innovative | 64, 125 |
| abstract_inverted_index.objectives | 48 |
| abstract_inverted_index.parameters | 16 |
| abstract_inverted_index.properties | 138 |
| abstract_inverted_index.statistic, | 162 |
| abstract_inverted_index.usefulness | 199 |
| abstract_inverted_index.OBJECTIVES: | 0 |
| abstract_inverted_index.alternative | 161 |
| abstract_inverted_index.conditional | 132 |
| abstract_inverted_index.coronavirus | 173 |
| abstract_inverted_index.correlation | 146 |
| abstract_inverted_index.illustrated | 205 |
| abstract_inverted_index.information | 25 |
| abstract_inverted_index.methodology | 126, 203 |
| abstract_inverted_index.necessarily | 153 |
| abstract_inverted_index.populations | 77 |
| abstract_inverted_index.probability | 135 |
| abstract_inverted_index.shortcoming | 181 |
| abstract_inverted_index.statistical | 4 |
| abstract_inverted_index.vaccination | 176 |
| abstract_inverted_index.implications | 10 |
| abstract_inverted_index.independent. | 158 |
| abstract_inverted_index.significance | 31 |
| abstract_inverted_index.unboundedly. | 123 |
| abstract_inverted_index.Heterogeneity | 74 |
| abstract_inverted_index.Meta-analysis | 1 |
| abstract_inverted_index.heterogeneity | 44 |
| abstract_inverted_index.implications. | 215 |
| abstract_inverted_index.unconditional | 134 |
| abstract_inverted_index.heterogeneity. | 115 |
| abstract_inverted_index.practice.METHODS: | 73 |
| abstract_inverted_index.structures.RESULTS: | 136 |
| abstract_inverted_index.meta-analysis.CONCLUSIONS: | 178 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |