The Burnside problem for Diffω(S2) Article Swipe
Related Concepts
Sebastián Hurtado
,
Alejandro Kocsard
,
Federico Rodríguez-Hertz
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1215/00127094-2020-0028
· OA: W3094108331
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1215/00127094-2020-0028
· OA: W3094108331
A group $G$ is periodic of bounded exponent if there exists $k\\in \\mathbb{N}$ such that every element of $G$ has order at most $k$ . We show that every finitely generated periodic group of bounded exponent $G\\lt \\operatorname{Diff}_{\\omega }(\\mathbb{S}^{2})$ is finite, where $\\operatorname{Diff}_{\\omega }(\\mathbb{S}^{2})$ denotes the group of diffeomorphisms of $\\mathbb{S}^{2}$ that preserve an area form $\\omega $ .
Related Topics
Finding more related topics…