The Burnside problem for $\text{Diff}_{\text{Vol}}(\mathbb{S}^2)$ Article Swipe
Related Concepts
Sebastián Hurtado
,
Alejandro Kocsard
,
Federico Rodríguez-Hertz
·
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1607.04603
· OA: W2492280057
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1607.04603
· OA: W2492280057
Let $S$ be a closed surface and $\text{Diff}_{\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \in \mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \subset \text{Diff}_{\text{Vol}}(S)$ is a finite group.
Related Topics
Finding more related topics…