The coding of migration status in English primary care from 2011 to 2024: a pilot use of Open Code Counts Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.07.24.25332167
Background The migration status of the 9.8 million migrants living in England is not systematically recorded in primary care electronic health records (EHRs). Codelist approaches enable us to create cohorts of individuals who have had a predefined, optional migration-related code (e.g. “refugee”) added to their EHR. Aims We aimed to explore the use of migration-related SNOMED CT codes to inform future research using primary care data. Design and Setting We used our Open Code Counts tool and R package to explore data published by NHS England on SNOMED CT code usage in English primary care. Method We created migration-related codelists and described their use from 1st August 2011 to 31st July 2024. We compared code usage to trends in migration-related statistics from the Home Office and the 2021 Census. Results There were 29.1 million uses of 1,114 migration-related codes from 2011 to 2024. Migration-related coding increased over time, exceeding the increase observed for coding overall, with a sharp increase from 2020, particularly for country-of-birth and language. Language coding represented 71% of code usage and where country of birth was recorded, there was mixed agreement with the census estimates. Coding of immigration legal statuses was low and overwhelmingly about asylum or refugee status. Conclusion Rapid assessment of migration-related coding using Open Code Counts highlights that a non-English first language is the most strongly represented characteristic in migrant cohorts in English primary care EHRs, which should be considered when interpreting future research findings. How this fits in This study offers population-wide insights into migration-related SNOMED CT coding in primary care in England from 2011 to 2024 using our new open-source tool, Open Code Counts. Here, we show that a first language that is not English is the most commonly recorded aspect of migration, which must be considered when interpreting results from studies that use this methodology for researching migrants’ health in primary care EHRs. We also show that migration-related coding has increased, particularly after the start of the pandemic and for country-of-birth and language codes. The increased use of these code types offers the opportunity for GP practices to better identify patients requiring language support and potential screening and service needs based on their country of birth. Summary sentence Language is the most commonly coded aspect of migration in primary care, which must be considered when interpreting primary care data studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.07.24.25332167
- https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdf
- OA Status
- green
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412672012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412672012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.07.24.25332167Digital Object Identifier
- Title
-
The coding of migration status in English primary care from 2011 to 2024: a pilot use of Open Code CountsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-25Full publication date if available
- Authors
-
Yamina Boukari, Lucinda Hiam, James Scuffell, Arina Tamborska, Rachel Burns, Milan Wiedemann, Inês Campos-Matos, Robert W Aldridge, Sally Hargreaves, Neha Pathak, Peter Walsh, Ben Goldacre, William HulmeList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.07.24.25332167Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdfDirect OA link when available
- Concepts
-
Coding (social sciences), Primary care, Code (set theory), Computer science, Statistics, Medicine, Mathematics, Programming language, Family medicine, Set (abstract data type)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412672012 |
|---|---|
| doi | https://doi.org/10.1101/2025.07.24.25332167 |
| ids.doi | https://doi.org/10.1101/2025.07.24.25332167 |
| ids.openalex | https://openalex.org/W4412672012 |
| fwci | 0.0 |
| type | preprint |
| title | The coding of migration status in English primary care from 2011 to 2024: a pilot use of Open Code Counts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11990 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9185000061988831 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3604 |
| topics[0].subfield.display_name | Emergency Medical Services |
| topics[0].display_name | Global Health Workforce Issues |
| topics[1].id | https://openalex.org/T10762 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9097999930381775 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3203 |
| topics[1].subfield.display_name | Clinical Psychology |
| topics[1].display_name | Migration, Health and Trauma |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C179518139 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6277711391448975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[0].display_name | Coding (social sciences) |
| concepts[1].id | https://openalex.org/C2984752397 |
| concepts[1].level | 2 |
| concepts[1].score | 0.608622670173645 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3259956 |
| concepts[1].display_name | Primary care |
| concepts[2].id | https://openalex.org/C2776760102 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5312488079071045 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[2].display_name | Code (set theory) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39645078778266907 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2810364365577698 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2727159559726715 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22235152125358582 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.20471197366714478 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| concepts[8].id | https://openalex.org/C512399662 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09866470098495483 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3505712 |
| concepts[8].display_name | Family medicine |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| keywords[0].id | https://openalex.org/keywords/coding |
| keywords[0].score | 0.6277711391448975 |
| keywords[0].display_name | Coding (social sciences) |
| keywords[1].id | https://openalex.org/keywords/primary-care |
| keywords[1].score | 0.608622670173645 |
| keywords[1].display_name | Primary care |
| keywords[2].id | https://openalex.org/keywords/code |
| keywords[2].score | 0.5312488079071045 |
| keywords[2].display_name | Code (set theory) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.39645078778266907 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.2810364365577698 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.2727159559726715 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.22235152125358582 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/programming-language |
| keywords[7].score | 0.20471197366714478 |
| keywords[7].display_name | Programming language |
| keywords[8].id | https://openalex.org/keywords/family-medicine |
| keywords[8].score | 0.09866470098495483 |
| keywords[8].display_name | Family medicine |
| language | en |
| locations[0].id | doi:10.1101/2025.07.24.25332167 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.07.24.25332167 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5069870220 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9171-6922 |
| authorships[0].author.display_name | Yamina Boukari |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[0].affiliations[0].raw_affiliation_string | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[0].institutions[0].id | https://openalex.org/I40120149 |
| authorships[0].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yamina Boukari |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[1].author.id | https://openalex.org/A5001785199 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6394-0978 |
| authorships[1].author.display_name | Lucinda Hiam |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Geography and the Environment, University of Oxford |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lucinda Hiam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Geography and the Environment, University of Oxford |
| authorships[2].author.id | https://openalex.org/A5032064941 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1468-0989 |
| authorships[2].author.display_name | James Scuffell |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Population Health Sciences, King's College London |
| authorships[2].institutions[0].id | https://openalex.org/I183935753 |
| authorships[2].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | King's College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jamie Scuffell |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Population Health Sciences, King's College London |
| authorships[3].author.id | https://openalex.org/A5074511953 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4661-8407 |
| authorships[3].author.display_name | Arina Tamborska |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[3].affiliations[0].raw_affiliation_string | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[3].institutions[0].id | https://openalex.org/I40120149 |
| authorships[3].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Oxford |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Arina Tamborska |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[4].author.id | https://openalex.org/A5035806396 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9559-2867 |
| authorships[4].author.display_name | Rachel Burns |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[4].affiliations[0].raw_affiliation_string | UCL Collaborative Centre for Inclusion Health, Research Department Epidemiology and Public Health, University College London |
| authorships[4].institutions[0].id | https://openalex.org/I45129253 |
| authorships[4].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rachel Burns |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | UCL Collaborative Centre for Inclusion Health, Research Department Epidemiology and Public Health, University College London |
| authorships[5].author.id | https://openalex.org/A5068964422 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1991-282X |
| authorships[5].author.display_name | Milan Wiedemann |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[5].affiliations[0].raw_affiliation_string | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[5].institutions[0].id | https://openalex.org/I40120149 |
| authorships[5].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Oxford |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Milan Wiedemann |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[6].author.id | https://openalex.org/A5029226677 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6480-4310 |
| authorships[6].author.display_name | Inês Campos-Matos |
| authorships[6].affiliations[0].raw_affiliation_string | Office for Health Improvement and Disparities, Department of Health and Social Care |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ines Campos-Matos |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Office for Health Improvement and Disparities, Department of Health and Social Care |
| authorships[7].author.id | https://openalex.org/A5005157826 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0542-0816 |
| authorships[7].author.display_name | Robert W Aldridge |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I3143470655 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute for Health Metrics and Evaluation, University of Washington |
| authorships[7].institutions[0].id | https://openalex.org/I3143470655 |
| authorships[7].institutions[0].ror | https://ror.org/02684h094 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I3143470655 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Institute for Health Metrics and Evaluation |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Robert W Aldridge |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute for Health Metrics and Evaluation, University of Washington |
| authorships[8].author.id | https://openalex.org/A5075807998 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2974-4348 |
| authorships[8].author.display_name | Sally Hargreaves |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I165862685, https://openalex.org/I4401726869 |
| authorships[8].affiliations[0].raw_affiliation_string | City St George's, University of London |
| authorships[8].institutions[0].id | https://openalex.org/I4401726869 |
| authorships[8].institutions[0].ror | https://ror.org/047ybhc09 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I4401726869 |
| authorships[8].institutions[0].country_code | |
| authorships[8].institutions[0].display_name | City St George's, University of London |
| authorships[8].institutions[1].id | https://openalex.org/I165862685 |
| authorships[8].institutions[1].ror | https://ror.org/040f08y74 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I165862685 |
| authorships[8].institutions[1].country_code | GB |
| authorships[8].institutions[1].display_name | St George's, University of London |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sally Hargreaves |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | City St George's, University of London |
| authorships[9].author.id | https://openalex.org/A5034396461 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1077-5358 |
| authorships[9].author.display_name | Neha Pathak |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[9].affiliations[0].raw_affiliation_string | Institute for Women's Health, University College London |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I21862455 |
| authorships[9].affiliations[1].raw_affiliation_string | Sexual and Reproductive Health, Central North West London NHS Foundation Trust |
| authorships[9].institutions[0].id | https://openalex.org/I21862455 |
| authorships[9].institutions[0].ror | https://ror.org/05drfg619 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I21862455 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | Central and North West London NHS Foundation Trust |
| authorships[9].institutions[1].id | https://openalex.org/I45129253 |
| authorships[9].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[9].institutions[1].country_code | GB |
| authorships[9].institutions[1].display_name | University College London |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Neha Pathak |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Institute for Women's Health, University College London, Sexual and Reproductive Health, Central North West London NHS Foundation Trust |
| authorships[10].author.id | https://openalex.org/A5107073276 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Peter Walsh |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[10].affiliations[0].raw_affiliation_string | The Migration Observatory, University of Oxford |
| authorships[10].institutions[0].id | https://openalex.org/I40120149 |
| authorships[10].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University of Oxford |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Peter Walsh |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | The Migration Observatory, University of Oxford |
| authorships[11].author.id | https://openalex.org/A5054757405 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5127-4728 |
| authorships[11].author.display_name | Ben Goldacre |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[11].affiliations[0].raw_affiliation_string | Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[11].institutions[0].id | https://openalex.org/I40120149 |
| authorships[11].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | University of Oxford |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Ben Goldacre |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[12].author.id | https://openalex.org/A5047279233 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-9162-4999 |
| authorships[12].author.display_name | William Hulme |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[12].affiliations[0].raw_affiliation_string | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| authorships[12].institutions[0].id | https://openalex.org/I40120149 |
| authorships[12].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | University of Oxford |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | William J Hulme |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Bennett Institute of Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The coding of migration status in English primary care from 2011 to 2024: a pilot use of Open Code Counts |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11990 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9185000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3604 |
| primary_topic.subfield.display_name | Emergency Medical Services |
| primary_topic.display_name | Global Health Workforce Issues |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.07.24.25332167 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.07.24.25332167 |
| primary_location.id | doi:10.1101/2025.07.24.25332167 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/07/25/2025.07.24.25332167.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.07.24.25332167 |
| publication_date | 2025-07-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2902040088, https://openalex.org/W2908885498, https://openalex.org/W4225552310, https://openalex.org/W3179640981, https://openalex.org/W2530435530, https://openalex.org/W4401152161, https://openalex.org/W4283749956, https://openalex.org/W4404790240, https://openalex.org/W2591074368, https://openalex.org/W4387078915, https://openalex.org/W4391071355, https://openalex.org/W4304689604, https://openalex.org/W4210476480, https://openalex.org/W4318817633, https://openalex.org/W4225154774, https://openalex.org/W2245388107, https://openalex.org/W4403820168, https://openalex.org/W3005847840 |
| referenced_works_count | 18 |
| abstract_inverted_index.R | 78 |
| abstract_inverted_index.a | 36, 157, 215, 277 |
| abstract_inverted_index.CT | 57, 89, 254 |
| abstract_inverted_index.GP | 345 |
| abstract_inverted_index.We | 48, 70, 97, 113, 313 |
| abstract_inverted_index.be | 235, 294, 382 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.in | 11, 17, 92, 119, 225, 228, 245, 256, 259, 309, 377 |
| abstract_inverted_index.is | 13, 219, 281, 284, 369 |
| abstract_inverted_index.of | 5, 31, 54, 136, 171, 177, 190, 206, 290, 325, 337, 364, 375 |
| abstract_inverted_index.on | 87, 361 |
| abstract_inverted_index.or | 200 |
| abstract_inverted_index.to | 28, 44, 50, 59, 80, 109, 117, 142, 263, 347 |
| abstract_inverted_index.us | 27 |
| abstract_inverted_index.we | 274 |
| abstract_inverted_index.1st | 106 |
| abstract_inverted_index.71% | 170 |
| abstract_inverted_index.9.8 | 7 |
| abstract_inverted_index.How | 242 |
| abstract_inverted_index.NHS | 85 |
| abstract_inverted_index.The | 2, 334 |
| abstract_inverted_index.and | 68, 77, 101, 126, 165, 174, 196, 328, 331, 354, 357 |
| abstract_inverted_index.for | 153, 163, 305, 329, 344 |
| abstract_inverted_index.had | 35 |
| abstract_inverted_index.has | 319 |
| abstract_inverted_index.low | 195 |
| abstract_inverted_index.new | 267 |
| abstract_inverted_index.not | 14, 282 |
| abstract_inverted_index.our | 72, 266 |
| abstract_inverted_index.the | 6, 52, 123, 127, 150, 186, 220, 285, 323, 326, 342, 370 |
| abstract_inverted_index.use | 53, 104, 302, 336 |
| abstract_inverted_index.was | 179, 182, 194 |
| abstract_inverted_index.who | 33 |
| abstract_inverted_index.2011 | 108, 141, 262 |
| abstract_inverted_index.2021 | 128 |
| abstract_inverted_index.2024 | 264 |
| abstract_inverted_index.29.1 | 133 |
| abstract_inverted_index.31st | 110 |
| abstract_inverted_index.Aims | 47 |
| abstract_inverted_index.Code | 74, 211, 271 |
| abstract_inverted_index.EHR. | 46 |
| abstract_inverted_index.Home | 124 |
| abstract_inverted_index.July | 111 |
| abstract_inverted_index.Open | 73, 210, 270 |
| abstract_inverted_index.This | 246 |
| abstract_inverted_index.also | 314 |
| abstract_inverted_index.care | 19, 65, 231, 258, 311, 387 |
| abstract_inverted_index.code | 40, 90, 115, 172, 339 |
| abstract_inverted_index.data | 82, 388 |
| abstract_inverted_index.fits | 244 |
| abstract_inverted_index.from | 105, 122, 140, 160, 261, 299 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.into | 251 |
| abstract_inverted_index.most | 221, 286, 371 |
| abstract_inverted_index.must | 293, 381 |
| abstract_inverted_index.over | 147 |
| abstract_inverted_index.show | 275, 315 |
| abstract_inverted_index.that | 214, 276, 280, 301, 316 |
| abstract_inverted_index.this | 243, 303 |
| abstract_inverted_index.tool | 76 |
| abstract_inverted_index.used | 71 |
| abstract_inverted_index.uses | 135 |
| abstract_inverted_index.were | 132 |
| abstract_inverted_index.when | 237, 296, 384 |
| abstract_inverted_index.with | 156, 185 |
| abstract_inverted_index.(e.g. | 41 |
| abstract_inverted_index.1,114 | 137 |
| abstract_inverted_index.2020, | 161 |
| abstract_inverted_index.2024. | 112, 143 |
| abstract_inverted_index.EHRs, | 232 |
| abstract_inverted_index.EHRs. | 312 |
| abstract_inverted_index.Here, | 273 |
| abstract_inverted_index.Rapid | 204 |
| abstract_inverted_index.There | 131 |
| abstract_inverted_index.about | 198 |
| abstract_inverted_index.added | 43 |
| abstract_inverted_index.after | 322 |
| abstract_inverted_index.aimed | 49 |
| abstract_inverted_index.based | 360 |
| abstract_inverted_index.birth | 178 |
| abstract_inverted_index.care, | 379 |
| abstract_inverted_index.care. | 95 |
| abstract_inverted_index.coded | 373 |
| abstract_inverted_index.codes | 58, 139 |
| abstract_inverted_index.data. | 66 |
| abstract_inverted_index.first | 217, 278 |
| abstract_inverted_index.legal | 192 |
| abstract_inverted_index.mixed | 183 |
| abstract_inverted_index.needs | 359 |
| abstract_inverted_index.sharp | 158 |
| abstract_inverted_index.start | 324 |
| abstract_inverted_index.study | 247 |
| abstract_inverted_index.their | 45, 103, 362 |
| abstract_inverted_index.there | 181 |
| abstract_inverted_index.these | 338 |
| abstract_inverted_index.time, | 148 |
| abstract_inverted_index.tool, | 269 |
| abstract_inverted_index.types | 340 |
| abstract_inverted_index.usage | 91, 116, 173 |
| abstract_inverted_index.using | 63, 209, 265 |
| abstract_inverted_index.where | 175 |
| abstract_inverted_index.which | 233, 292, 380 |
| abstract_inverted_index.August | 107 |
| abstract_inverted_index.Coding | 189 |
| abstract_inverted_index.Counts | 75, 212 |
| abstract_inverted_index.Design | 67 |
| abstract_inverted_index.Method | 96 |
| abstract_inverted_index.Office | 125 |
| abstract_inverted_index.SNOMED | 56, 88, 253 |
| abstract_inverted_index.aspect | 289, 374 |
| abstract_inverted_index.asylum | 199 |
| abstract_inverted_index.better | 348 |
| abstract_inverted_index.birth. | 365 |
| abstract_inverted_index.census | 187 |
| abstract_inverted_index.codes. | 333 |
| abstract_inverted_index.coding | 145, 154, 168, 208, 255, 318 |
| abstract_inverted_index.create | 29 |
| abstract_inverted_index.enable | 26 |
| abstract_inverted_index.future | 61, 239 |
| abstract_inverted_index.health | 21, 308 |
| abstract_inverted_index.inform | 60 |
| abstract_inverted_index.living | 10 |
| abstract_inverted_index.offers | 248, 341 |
| abstract_inverted_index.should | 234 |
| abstract_inverted_index.status | 4 |
| abstract_inverted_index.trends | 118 |
| abstract_inverted_index.(EHRs). | 23 |
| abstract_inverted_index.Census. | 129 |
| abstract_inverted_index.Counts. | 272 |
| abstract_inverted_index.England | 12, 86, 260 |
| abstract_inverted_index.English | 93, 229, 283 |
| abstract_inverted_index.Results | 130 |
| abstract_inverted_index.Setting | 69 |
| abstract_inverted_index.Summary | 366 |
| abstract_inverted_index.cohorts | 30, 227 |
| abstract_inverted_index.country | 176, 363 |
| abstract_inverted_index.created | 98 |
| abstract_inverted_index.explore | 51, 81 |
| abstract_inverted_index.migrant | 226 |
| abstract_inverted_index.million | 8, 134 |
| abstract_inverted_index.package | 79 |
| abstract_inverted_index.primary | 18, 64, 94, 230, 257, 310, 378, 386 |
| abstract_inverted_index.records | 22 |
| abstract_inverted_index.refugee | 201 |
| abstract_inverted_index.results | 298 |
| abstract_inverted_index.service | 358 |
| abstract_inverted_index.status. | 202 |
| abstract_inverted_index.studies | 300 |
| abstract_inverted_index.support | 353 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Codelist | 24 |
| abstract_inverted_index.Language | 167, 368 |
| abstract_inverted_index.commonly | 287, 372 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.identify | 349 |
| abstract_inverted_index.increase | 151, 159 |
| abstract_inverted_index.insights | 250 |
| abstract_inverted_index.language | 218, 279, 332, 352 |
| abstract_inverted_index.migrants | 9 |
| abstract_inverted_index.observed | 152 |
| abstract_inverted_index.optional | 38 |
| abstract_inverted_index.overall, | 155 |
| abstract_inverted_index.pandemic | 327 |
| abstract_inverted_index.patients | 350 |
| abstract_inverted_index.recorded | 16, 288 |
| abstract_inverted_index.research | 62, 240 |
| abstract_inverted_index.sentence | 367 |
| abstract_inverted_index.statuses | 193 |
| abstract_inverted_index.strongly | 222 |
| abstract_inverted_index.studies. | 389 |
| abstract_inverted_index.agreement | 184 |
| abstract_inverted_index.codelists | 100 |
| abstract_inverted_index.described | 102 |
| abstract_inverted_index.exceeding | 149 |
| abstract_inverted_index.findings. | 241 |
| abstract_inverted_index.increased | 146, 335 |
| abstract_inverted_index.language. | 166 |
| abstract_inverted_index.migration | 3, 376 |
| abstract_inverted_index.potential | 355 |
| abstract_inverted_index.practices | 346 |
| abstract_inverted_index.published | 83 |
| abstract_inverted_index.recorded, | 180 |
| abstract_inverted_index.requiring | 351 |
| abstract_inverted_index.screening | 356 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 203 |
| abstract_inverted_index.approaches | 25 |
| abstract_inverted_index.assessment | 205 |
| abstract_inverted_index.considered | 236, 295, 383 |
| abstract_inverted_index.electronic | 20 |
| abstract_inverted_index.estimates. | 188 |
| abstract_inverted_index.highlights | 213 |
| abstract_inverted_index.increased, | 320 |
| abstract_inverted_index.migration, | 291 |
| abstract_inverted_index.statistics | 121 |
| abstract_inverted_index.immigration | 191 |
| abstract_inverted_index.individuals | 32 |
| abstract_inverted_index.methodology | 304 |
| abstract_inverted_index.migrants’ | 307 |
| abstract_inverted_index.non-English | 216 |
| abstract_inverted_index.open-source | 268 |
| abstract_inverted_index.opportunity | 343 |
| abstract_inverted_index.predefined, | 37 |
| abstract_inverted_index.represented | 169, 223 |
| abstract_inverted_index.researching | 306 |
| abstract_inverted_index.interpreting | 238, 297, 385 |
| abstract_inverted_index.particularly | 162, 321 |
| abstract_inverted_index.characteristic | 224 |
| abstract_inverted_index.overwhelmingly | 197 |
| abstract_inverted_index.systematically | 15 |
| abstract_inverted_index.“refugee”) | 42 |
| abstract_inverted_index.population-wide | 249 |
| abstract_inverted_index.country-of-birth | 164, 330 |
| abstract_inverted_index.Migration-related | 144 |
| abstract_inverted_index.migration-related | 39, 55, 99, 120, 138, 207, 252, 317 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5069870220 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 13 |
| corresponding_institution_ids | https://openalex.org/I40120149 |
| citation_normalized_percentile.value | 0.43999675 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |