The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/tpami.2025.3552434
The Cauchy-Schwarz (CS) divergence was developed by Príncipe et al. in 2000. In this paper, we extend the classic CS divergence to quantify the closeness between two conditional distributions and show that the developed conditional CS divergence can be elegantly estimated by a kernel density estimator from given samples. We illustrate the advantages (e.g., rigorous faithfulness guarantee, lower computational complexity, higher statistical power, and much more flexibility in a wide range of applications) of our conditional CS divergence over previous proposals, such as the conditional Kullback-Leibler divergence and the conditional maximum mean discrepancy. We also demonstrate the compelling performance of conditional CS divergence in two machine learning tasks related to time series data and sequential inference, namely time series clustering and uncertainty-guided exploration for sequential decision making.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tpami.2025.3552434
- OA Status
- green
- Cited By
- 1
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408564930
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408564930Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tpami.2025.3552434Digital Object Identifier
- Title
-
The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision MakingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
Shujian Yu, Hongming Li, Sigurd Løkse, Robert Jenssen, José C. Prı́ncipeList of authors in order
- Landing page
-
https://doi.org/10.1109/tpami.2025.3552434Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/1871.1/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4bDirect OA link when available
- Concepts
-
Computer science, Time series, Series (stratigraphy), Divergence (linguistics), Artificial intelligence, Cauchy distribution, Data mining, Algorithm, Mathematics, Pattern recognition (psychology), Machine learning, Statistics, Geology, Paleontology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408564930 |
|---|---|
| doi | https://doi.org/10.1109/tpami.2025.3552434 |
| ids.doi | https://doi.org/10.1109/tpami.2025.3552434 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40100651 |
| ids.openalex | https://openalex.org/W4408564930 |
| fwci | 3.71677326 |
| type | article |
| title | The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making |
| biblio.issue | 7 |
| biblio.volume | 47 |
| biblio.last_page | 5917 |
| biblio.first_page | 5901 |
| topics[0].id | https://openalex.org/T11236 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9315000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Control Systems and Identification |
| topics[1].id | https://openalex.org/T12135 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9199000000953674 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Fuzzy Systems and Optimization |
| topics[2].id | https://openalex.org/T12062 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.906499981880188 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Approximation Theory and Sequence Spaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5523444414138794 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C151406439 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5343873500823975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[1].display_name | Time series |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5273008346557617 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C207390915 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5257191061973572 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[3].display_name | Divergence (linguistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46777477860450745 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C49344536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46318554878234863 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q726441 |
| concepts[5].display_name | Cauchy distribution |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37420588731765747 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3609203100204468 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3559388518333435 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3503597378730774 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32037949562072754 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2615543007850647 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08220162987709045 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C151730666 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[13].display_name | Paleontology |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5523444414138794 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/time-series |
| keywords[1].score | 0.5343873500823975 |
| keywords[1].display_name | Time series |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.5273008346557617 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/divergence |
| keywords[3].score | 0.5257191061973572 |
| keywords[3].display_name | Divergence (linguistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.46777477860450745 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/cauchy-distribution |
| keywords[5].score | 0.46318554878234863 |
| keywords[5].display_name | Cauchy distribution |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.37420588731765747 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.3609203100204468 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.3559388518333435 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3503597378730774 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.32037949562072754 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2615543007850647 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.08220162987709045 |
| keywords[12].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1109/tpami.2025.3552434 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S199944782 |
| locations[0].source.issn | 0162-8828, 1939-3539, 2160-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0162-8828 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Pattern Analysis and Machine Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320439 |
| locations[0].source.host_organization_name | IEEE Computer Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Pattern Analysis and Machine Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1109/tpami.2025.3552434 |
| locations[1].id | pmid:40100651 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on pattern analysis and machine intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40100651 |
| locations[2].id | pmh:oai:research.vu.nl:openaire_cris_publications/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401107 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | VU Research Portal |
| locations[2].source.host_organization | https://openalex.org/I865915315 |
| locations[2].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[2].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Yu, S, Li, H, Lokse, S, Jenssen, R & Principe, J C 2025, 'The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 47, no. 7, pp. 5901-5917. https://doi.org/10.1109/TPAMI.2025.3552434 |
| locations[2].landing_page_url | https://hdl.handle.net/1871.1/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| locations[3].id | pmh:oai:research.vu.nl:publications/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401107 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | VU Research Portal |
| locations[3].source.host_organization | https://openalex.org/I865915315 |
| locations[3].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[3].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Yu, S, Li, H, Lokse, S, Jenssen, R & Principe, J C 2025, 'The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 47, no. 7, pp. 5901-5917. https://doi.org/10.1109/TPAMI.2025.3552434 |
| locations[3].landing_page_url | https://research.vu.nl/en/publications/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5041358503 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[0].author.display_name | Shujian Yu |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78037679 |
| authorships[0].affiliations[0].raw_affiliation_string | Machine Learning Group, UiT - The Arctic University of Norway, Tromsø, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I78037679 |
| authorships[0].institutions[0].ror | https://ror.org/00wge5k78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78037679 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | UiT The Arctic University of Norway |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shujian Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Machine Learning Group, UiT - The Arctic University of Norway, Tromsø, Norway |
| authorships[1].author.id | https://openalex.org/A5100369958 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6024-677X |
| authorships[1].author.display_name | Hongming Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA |
| authorships[1].institutions[0].id | https://openalex.org/I33213144 |
| authorships[1].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongming Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA |
| authorships[2].author.id | https://openalex.org/A5013696891 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1953-4315 |
| authorships[2].author.display_name | Sigurd Løkse |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210107808 |
| authorships[2].affiliations[0].raw_affiliation_string | Drones and Autonomous Systems group at NORCE Norwegian Research Centre, Tromsø, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I4210107808 |
| authorships[2].institutions[0].ror | https://ror.org/02gagpf75 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210107808 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | NORCE Research AS |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sigurd Løkse |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Drones and Autonomous Systems group at NORCE Norwegian Research Centre, Tromsø, Norway |
| authorships[3].author.id | https://openalex.org/A5013414039 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7496-8474 |
| authorships[3].author.display_name | Robert Jenssen |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I78037679 |
| authorships[3].affiliations[0].raw_affiliation_string | Machine Learning Group, UiT - The Arctic University of Norway, Tromsø, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I78037679 |
| authorships[3].institutions[0].ror | https://ror.org/00wge5k78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I78037679 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | UiT The Arctic University of Norway |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Robert Jenssen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Machine Learning Group, UiT - The Arctic University of Norway, Tromsø, Norway |
| authorships[4].author.id | https://openalex.org/A5019504861 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3449-3531 |
| authorships[4].author.display_name | José C. Prı́ncipe |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA |
| authorships[4].institutions[0].id | https://openalex.org/I33213144 |
| authorships[4].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Florida |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | José C. Príncipe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/1871.1/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11236 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9315000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Control Systems and Identification |
| related_works | https://openalex.org/W4403822433, https://openalex.org/W3208095355, https://openalex.org/W2177370417, https://openalex.org/W2052507016, https://openalex.org/W2180461068, https://openalex.org/W2051816080, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:research.vu.nl:openaire_cris_publications/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401107 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | VU Research Portal |
| best_oa_location.source.host_organization | https://openalex.org/I865915315 |
| best_oa_location.source.host_organization_name | Vrije Universiteit Amsterdam |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I865915315 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Yu, S, Li, H, Lokse, S, Jenssen, R & Principe, J C 2025, 'The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 47, no. 7, pp. 5901-5917. https://doi.org/10.1109/TPAMI.2025.3552434 |
| best_oa_location.landing_page_url | https://hdl.handle.net/1871.1/f2ee4fbb-5753-4e45-ad83-5e0d0efd3a4b |
| primary_location.id | doi:10.1109/tpami.2025.3552434 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S199944782 |
| primary_location.source.issn | 0162-8828, 1939-3539, 2160-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0162-8828 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Pattern Analysis and Machine Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320439 |
| primary_location.source.host_organization_name | IEEE Computer Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Pattern Analysis and Machine Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1109/tpami.2025.3552434 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1594039573, https://openalex.org/W2055597244, https://openalex.org/W6741832134, https://openalex.org/W6676726796, https://openalex.org/W2084649117, https://openalex.org/W6763094270, https://openalex.org/W4210855551, https://openalex.org/W2328111639, https://openalex.org/W3127518054, https://openalex.org/W6688325169, https://openalex.org/W4230367971, https://openalex.org/W1804536132, https://openalex.org/W2031774932, https://openalex.org/W2136251587, https://openalex.org/W2118020555, https://openalex.org/W1977234023, https://openalex.org/W2914095169, https://openalex.org/W6640963894, https://openalex.org/W6787819586, https://openalex.org/W4221161771, https://openalex.org/W6758833332, https://openalex.org/W6713955831, https://openalex.org/W2964285681, https://openalex.org/W6771610787, https://openalex.org/W6718237598, https://openalex.org/W2150879893, https://openalex.org/W2593829254, https://openalex.org/W2146641075, https://openalex.org/W2077933344, https://openalex.org/W6773055369, https://openalex.org/W3020943070, https://openalex.org/W6674525294, https://openalex.org/W1965021696, https://openalex.org/W1631356911, https://openalex.org/W2002870907, https://openalex.org/W6786991271, https://openalex.org/W6863452158, https://openalex.org/W6847512630, https://openalex.org/W6728551298, https://openalex.org/W3191808899, https://openalex.org/W4214698730, https://openalex.org/W6639134244, https://openalex.org/W1607114662, https://openalex.org/W2119983807, https://openalex.org/W2041782669, https://openalex.org/W2052066602, https://openalex.org/W1972823717, https://openalex.org/W2096023955, https://openalex.org/W1576537667, https://openalex.org/W2074209423, https://openalex.org/W3201520726, https://openalex.org/W6768082792, https://openalex.org/W6604828220, https://openalex.org/W2143325592, https://openalex.org/W2118529802, https://openalex.org/W2057053883, https://openalex.org/W789250018, https://openalex.org/W2604269166, https://openalex.org/W2167932108, https://openalex.org/W2126918828, https://openalex.org/W2105795585, https://openalex.org/W2283896980, https://openalex.org/W2581490870, https://openalex.org/W1549386224, https://openalex.org/W2013029404, https://openalex.org/W6757058172, https://openalex.org/W2787471386, https://openalex.org/W2027028757, https://openalex.org/W2014914755, https://openalex.org/W6796051603, https://openalex.org/W6868204940, https://openalex.org/W2101629643, https://openalex.org/W1947251450, https://openalex.org/W6633949838, https://openalex.org/W6683633756, https://openalex.org/W3090414386, https://openalex.org/W2559463885 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 42, 68 |
| abstract_inverted_index.CS | 19, 35, 76, 101 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.We | 49, 93 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.be | 38 |
| abstract_inverted_index.by | 6, 41 |
| abstract_inverted_index.et | 8 |
| abstract_inverted_index.in | 10, 67, 103 |
| abstract_inverted_index.of | 71, 73, 99 |
| abstract_inverted_index.to | 21, 109 |
| abstract_inverted_index.we | 15 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.al. | 9 |
| abstract_inverted_index.and | 29, 63, 87, 113, 120 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.for | 123 |
| abstract_inverted_index.our | 74 |
| abstract_inverted_index.the | 17, 23, 32, 51, 83, 88, 96 |
| abstract_inverted_index.two | 26, 104 |
| abstract_inverted_index.was | 4 |
| abstract_inverted_index.(CS) | 2 |
| abstract_inverted_index.also | 94 |
| abstract_inverted_index.data | 112 |
| abstract_inverted_index.from | 46 |
| abstract_inverted_index.mean | 91 |
| abstract_inverted_index.more | 65 |
| abstract_inverted_index.much | 64 |
| abstract_inverted_index.over | 78 |
| abstract_inverted_index.show | 30 |
| abstract_inverted_index.such | 81 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.time | 110, 117 |
| abstract_inverted_index.wide | 69 |
| abstract_inverted_index.2000. | 11 |
| abstract_inverted_index.given | 47 |
| abstract_inverted_index.lower | 57 |
| abstract_inverted_index.range | 70 |
| abstract_inverted_index.tasks | 107 |
| abstract_inverted_index.(e.g., | 53 |
| abstract_inverted_index.extend | 16 |
| abstract_inverted_index.higher | 60 |
| abstract_inverted_index.kernel | 43 |
| abstract_inverted_index.namely | 116 |
| abstract_inverted_index.paper, | 14 |
| abstract_inverted_index.power, | 62 |
| abstract_inverted_index.series | 111, 118 |
| abstract_inverted_index.between | 25 |
| abstract_inverted_index.classic | 18 |
| abstract_inverted_index.density | 44 |
| abstract_inverted_index.machine | 105 |
| abstract_inverted_index.making. | 126 |
| abstract_inverted_index.maximum | 90 |
| abstract_inverted_index.related | 108 |
| abstract_inverted_index.decision | 125 |
| abstract_inverted_index.learning | 106 |
| abstract_inverted_index.previous | 79 |
| abstract_inverted_index.quantify | 22 |
| abstract_inverted_index.rigorous | 54 |
| abstract_inverted_index.samples. | 48 |
| abstract_inverted_index.Príncipe | 7 |
| abstract_inverted_index.closeness | 24 |
| abstract_inverted_index.developed | 5, 33 |
| abstract_inverted_index.elegantly | 39 |
| abstract_inverted_index.estimated | 40 |
| abstract_inverted_index.estimator | 45 |
| abstract_inverted_index.advantages | 52 |
| abstract_inverted_index.clustering | 119 |
| abstract_inverted_index.compelling | 97 |
| abstract_inverted_index.divergence | 3, 20, 36, 77, 86, 102 |
| abstract_inverted_index.guarantee, | 56 |
| abstract_inverted_index.illustrate | 50 |
| abstract_inverted_index.inference, | 115 |
| abstract_inverted_index.proposals, | 80 |
| abstract_inverted_index.sequential | 114, 124 |
| abstract_inverted_index.complexity, | 59 |
| abstract_inverted_index.conditional | 27, 34, 75, 84, 89, 100 |
| abstract_inverted_index.demonstrate | 95 |
| abstract_inverted_index.exploration | 122 |
| abstract_inverted_index.flexibility | 66 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.statistical | 61 |
| abstract_inverted_index.discrepancy. | 92 |
| abstract_inverted_index.faithfulness | 55 |
| abstract_inverted_index.applications) | 72 |
| abstract_inverted_index.computational | 58 |
| abstract_inverted_index.distributions | 28 |
| abstract_inverted_index.Cauchy-Schwarz | 1 |
| abstract_inverted_index.Kullback-Leibler | 85 |
| abstract_inverted_index.uncertainty-guided | 121 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.83126133 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |