The Cost of Shuffling in Private Gradient Based Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.03652
We consider the problem of differentially private (DP) convex empirical risk minimization (ERM). While the standard DP-SGD algorithm is theoretically well-established, practical implementations often rely on shuffled gradient methods that traverse the training data sequentially rather than sampling with replacement in each iteration. Despite their widespread use, the theoretical privacy-accuracy trade-offs of private shuffled gradient methods (\textit{DP-ShuffleG}) remain poorly understood, leading to a gap between theory and practice. In this work, we leverage privacy amplification by iteration (PABI) and a novel application of Stein's lemma to provide the first empirical excess risk bound of \textit{DP-ShuffleG}. Our result shows that data shuffling results in worse empirical excess risk for \textit{DP-ShuffleG} compared to DP-SGD. To address this limitation, we propose \textit{Interleaved-ShuffleG}, a hybrid approach that integrates public data samples in private optimization. By alternating optimization steps that use private and public samples, \textit{Interleaved-ShuffleG} effectively reduces empirical excess risk. Our analysis introduces a new optimization framework with surrogate objectives, adaptive noise injection, and a dissimilarity metric, which can be of independent interest. Our experiments on diverse datasets and tasks demonstrate the superiority of \textit{Interleaved-ShuffleG} over several baselines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.03652
- https://arxiv.org/pdf/2502.03652
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407244624
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407244624Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.03652Digital Object Identifier
- Title
-
The Cost of Shuffling in Private Gradient Based OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-05Full publication date if available
- Authors
-
Shuli Jiang, Pranay Sharma, Zhiwei Steven Wu, Gauri JoshiList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.03652Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.03652Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.03652Direct OA link when available
- Concepts
-
Shuffling, Mathematical optimization, Computer science, Business, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407244624 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.03652 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.03652 |
| ids.openalex | https://openalex.org/W4407244624 |
| fwci | |
| type | preprint |
| title | The Cost of Shuffling in Private Gradient Based Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9549999833106995 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10963 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Advanced Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C167927819 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8955973386764526 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1930567 |
| concepts[0].display_name | Shuffling |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4314211308956146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3817407488822937 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3296999931335449 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.29472815990448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.14523085951805115 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/shuffling |
| keywords[0].score | 0.8955973386764526 |
| keywords[0].display_name | Shuffling |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.4314211308956146 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3817407488822937 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.3296999931335449 |
| keywords[3].display_name | Business |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.29472815990448 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.14523085951805115 |
| keywords[5].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.03652 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.03652 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.03652 |
| locations[1].id | doi:10.48550/arxiv.2502.03652 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.03652 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013215630 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shuli Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Shuli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028196076 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-8027-7913 |
| authorships[1].author.display_name | Pranay Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharma, Pranay |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001070941 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8125-8227 |
| authorships[2].author.display_name | Zhiwei Steven Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Zhiwei Steven |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067441201 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[3].author.display_name | Gauri Joshi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joshi, Gauri |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.03652 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Cost of Shuffling in Private Gradient Based Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9549999833106995 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4213239787, https://openalex.org/W2045745654, https://openalex.org/W2114337652, https://openalex.org/W4377131110, https://openalex.org/W4388857216, https://openalex.org/W4294559962, https://openalex.org/W2046590706 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.03652 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.03652 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.03652 |
| primary_location.id | pmh:oai:arXiv.org:2502.03652 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.03652 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.03652 |
| publication_date | 2025-02-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 79, 119, 149, 160 |
| abstract_inverted_index.By | 130 |
| abstract_inverted_index.In | 68 |
| abstract_inverted_index.To | 112 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.by | 75 |
| abstract_inverted_index.in | 40, 102, 127 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 4, 51, 82, 93, 166, 179 |
| abstract_inverted_index.on | 25, 171 |
| abstract_inverted_index.to | 61, 85, 110 |
| abstract_inverted_index.we | 71, 116 |
| abstract_inverted_index.Our | 95, 146, 169 |
| abstract_inverted_index.and | 66, 78, 137, 159, 174 |
| abstract_inverted_index.can | 164 |
| abstract_inverted_index.for | 107 |
| abstract_inverted_index.gap | 63 |
| abstract_inverted_index.new | 150 |
| abstract_inverted_index.the | 2, 14, 31, 47, 87, 177 |
| abstract_inverted_index.use | 135 |
| abstract_inverted_index.(DP) | 7 |
| abstract_inverted_index.data | 33, 99, 125 |
| abstract_inverted_index.each | 41 |
| abstract_inverted_index.over | 181 |
| abstract_inverted_index.rely | 24 |
| abstract_inverted_index.risk | 10, 91, 106 |
| abstract_inverted_index.than | 36 |
| abstract_inverted_index.that | 29, 98, 122, 134 |
| abstract_inverted_index.this | 69, 114 |
| abstract_inverted_index.use, | 46 |
| abstract_inverted_index.with | 38, 153 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.bound | 92 |
| abstract_inverted_index.first | 88 |
| abstract_inverted_index.lemma | 84 |
| abstract_inverted_index.noise | 157 |
| abstract_inverted_index.novel | 80 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.risk. | 145 |
| abstract_inverted_index.shows | 97 |
| abstract_inverted_index.steps | 133 |
| abstract_inverted_index.tasks | 175 |
| abstract_inverted_index.their | 44 |
| abstract_inverted_index.which | 163 |
| abstract_inverted_index.work, | 70 |
| abstract_inverted_index.worse | 103 |
| abstract_inverted_index.(ERM). | 12 |
| abstract_inverted_index.(PABI) | 77 |
| abstract_inverted_index.DP-SGD | 16 |
| abstract_inverted_index.convex | 8 |
| abstract_inverted_index.excess | 90, 105, 144 |
| abstract_inverted_index.hybrid | 120 |
| abstract_inverted_index.poorly | 58 |
| abstract_inverted_index.public | 124, 138 |
| abstract_inverted_index.rather | 35 |
| abstract_inverted_index.remain | 57 |
| abstract_inverted_index.result | 96 |
| abstract_inverted_index.theory | 65 |
| abstract_inverted_index.DP-SGD. | 111 |
| abstract_inverted_index.Despite | 43 |
| abstract_inverted_index.Stein's | 83 |
| abstract_inverted_index.address | 113 |
| abstract_inverted_index.between | 64 |
| abstract_inverted_index.diverse | 172 |
| abstract_inverted_index.leading | 60 |
| abstract_inverted_index.methods | 28, 55 |
| abstract_inverted_index.metric, | 162 |
| abstract_inverted_index.privacy | 73 |
| abstract_inverted_index.private | 6, 52, 128, 136 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.propose | 117 |
| abstract_inverted_index.provide | 86 |
| abstract_inverted_index.reduces | 142 |
| abstract_inverted_index.results | 101 |
| abstract_inverted_index.samples | 126 |
| abstract_inverted_index.several | 182 |
| abstract_inverted_index.adaptive | 156 |
| abstract_inverted_index.analysis | 147 |
| abstract_inverted_index.approach | 121 |
| abstract_inverted_index.compared | 109 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.datasets | 173 |
| abstract_inverted_index.gradient | 27, 54 |
| abstract_inverted_index.leverage | 72 |
| abstract_inverted_index.samples, | 139 |
| abstract_inverted_index.sampling | 37 |
| abstract_inverted_index.shuffled | 26, 53 |
| abstract_inverted_index.standard | 15 |
| abstract_inverted_index.training | 32 |
| abstract_inverted_index.traverse | 30 |
| abstract_inverted_index.algorithm | 17 |
| abstract_inverted_index.empirical | 9, 89, 104, 143 |
| abstract_inverted_index.framework | 152 |
| abstract_inverted_index.interest. | 168 |
| abstract_inverted_index.iteration | 76 |
| abstract_inverted_index.practical | 21 |
| abstract_inverted_index.practice. | 67 |
| abstract_inverted_index.shuffling | 100 |
| abstract_inverted_index.surrogate | 154 |
| abstract_inverted_index.baselines. | 183 |
| abstract_inverted_index.injection, | 158 |
| abstract_inverted_index.integrates | 123 |
| abstract_inverted_index.introduces | 148 |
| abstract_inverted_index.iteration. | 42 |
| abstract_inverted_index.trade-offs | 50 |
| abstract_inverted_index.widespread | 45 |
| abstract_inverted_index.alternating | 131 |
| abstract_inverted_index.application | 81 |
| abstract_inverted_index.demonstrate | 176 |
| abstract_inverted_index.effectively | 141 |
| abstract_inverted_index.experiments | 170 |
| abstract_inverted_index.independent | 167 |
| abstract_inverted_index.limitation, | 115 |
| abstract_inverted_index.objectives, | 155 |
| abstract_inverted_index.replacement | 39 |
| abstract_inverted_index.superiority | 178 |
| abstract_inverted_index.theoretical | 48 |
| abstract_inverted_index.understood, | 59 |
| abstract_inverted_index.minimization | 11 |
| abstract_inverted_index.optimization | 132, 151 |
| abstract_inverted_index.sequentially | 34 |
| abstract_inverted_index.amplification | 74 |
| abstract_inverted_index.dissimilarity | 161 |
| abstract_inverted_index.optimization. | 129 |
| abstract_inverted_index.theoretically | 19 |
| abstract_inverted_index.differentially | 5 |
| abstract_inverted_index.implementations | 22 |
| abstract_inverted_index.privacy-accuracy | 49 |
| abstract_inverted_index.well-established, | 20 |
| abstract_inverted_index.\textit{DP-ShuffleG} | 108 |
| abstract_inverted_index.\textit{DP-ShuffleG}. | 94 |
| abstract_inverted_index.(\textit{DP-ShuffleG}) | 56 |
| abstract_inverted_index.\textit{Interleaved-ShuffleG} | 140, 180 |
| abstract_inverted_index.\textit{Interleaved-ShuffleG}, | 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |