The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.17605/osf.io/yehjb
Delayed and risky choice (DARC) experiments are a cornerstone of research in psychology, behavioural economics and neuroeconomics. By collecting an agent's preferences between pairs of prospects we can characterise their preferences, investigate what affects them, and probe the underlying decision making mechanisms. We present a state-of-the-art approach and software toolbox allowing such DARC experiments to be run in a highly efficient way. Data collection is costly, so our toolbox automatically and adaptively generates pairs of prospects in real time to maximise the information gathered about the participant's behaviours. We demonstrate that this leads to improvements over alternative experimental paradigms. The key to releasing our real time and automatic performance is a number of advances over current Bayesian adaptive design methodology. In particular, we derive an improved estimator for discrete output problems and design a novel algorithm for automating sequential adaptive design. We provide a number of pre-prepared DARC tools for researchers to use, but a key contribution is an adaptive experiment toolbox that can be extended to virtually any 2-alternative-choice tasks. In particular, to carry out custom adaptive experiments using our toolbox, the user need only encode their behavioural model and design space - both the subsequent inference and sequential design optimisation are automated for arbitrary models the user might write.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17605/osf.io/yehjb
- OA Status
- green
- Cited By
- 8
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2949260458
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2949260458Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17605/osf.io/yehjbDigital Object Identifier
- Title
-
The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive designWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Benjamin T. Vincent, Tom RainforthList of authors in order
- Landing page
-
https://doi.org/10.17605/osf.io/yehjbPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17605/osf.io/yehjbDirect OA link when available
- Concepts
-
Toolbox, Bayesian probability, Computer science, Artificial intelligence, Adaptive design, Machine learning, Medicine, Programming language, Clinical trial, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2021: 3, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2949260458 |
|---|---|
| doi | https://doi.org/10.17605/osf.io/yehjb |
| ids.doi | https://doi.org/10.17605/osf.io/yehjb |
| ids.mag | 2949260458 |
| ids.openalex | https://openalex.org/W2949260458 |
| fwci | 0.52615057 |
| type | article |
| title | The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11798 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Optimal Experimental Design Methods |
| topics[1].id | https://openalex.org/T11235 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9018999934196472 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods in Clinical Trials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777655017 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7719526290893555 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1501161 |
| concepts[0].display_name | Toolbox |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.61454176902771 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.609583854675293 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4709668457508087 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2982777018 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4457029402256012 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q99268086 |
| concepts[4].display_name | Adaptive design |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35391300916671753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.09070658683776855 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| concepts[8].id | https://openalex.org/C535046627 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30612 |
| concepts[8].display_name | Clinical trial |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/toolbox |
| keywords[0].score | 0.7719526290893555 |
| keywords[0].display_name | Toolbox |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.61454176902771 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.609583854675293 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4709668457508087 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/adaptive-design |
| keywords[4].score | 0.4457029402256012 |
| keywords[4].display_name | Adaptive design |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.35391300916671753 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.09070658683776855 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.17605/osf.io/yehjb |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407050956 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Open Science Framework |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.17605/osf.io/yehjb |
| locations[1].id | mag:2949260458 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://discovery.dundee.ac.uk/en/publications/the-darc-toolbox-automated-flexible-and-efficient-delayed-and-ris |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5049448956 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8801-2430 |
| authorships[0].author.display_name | Benjamin T. Vincent |
| authorships[0].affiliations[0].raw_affiliation_string | Psychology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin T Vincent |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Psychology |
| authorships[1].author.id | https://openalex.org/A5078631467 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tom Rainforth |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford. |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tom Rainforth |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17605/osf.io/yehjb |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11798 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Optimal Experimental Design Methods |
| related_works | https://openalex.org/W3088906173, https://openalex.org/W2528274206, https://openalex.org/W2014018052, https://openalex.org/W3146951893, https://openalex.org/W3167541304, https://openalex.org/W2572517754, https://openalex.org/W2512531744, https://openalex.org/W2594401950, https://openalex.org/W2375369432, https://openalex.org/W2761396169, https://openalex.org/W2525135705, https://openalex.org/W2182698362, https://openalex.org/W2168795302, https://openalex.org/W71326850, https://openalex.org/W2977579198, https://openalex.org/W2321395328, https://openalex.org/W1998046778, https://openalex.org/W2490581879, https://openalex.org/W2148387711, https://openalex.org/W43211538 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.17605/osf.io/yehjb |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407050956 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Open Science Framework |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17605/osf.io/yehjb |
| primary_location.id | doi:10.17605/osf.io/yehjb |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407050956 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Open Science Framework |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.17605/osf.io/yehjb |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 193 |
| abstract_inverted_index.a | 7, 44, 58, 110, 133, 143, 154 |
| abstract_inverted_index.By | 17 |
| abstract_inverted_index.In | 120, 171 |
| abstract_inverted_index.We | 42, 88, 141 |
| abstract_inverted_index.an | 19, 124, 158 |
| abstract_inverted_index.be | 55, 164 |
| abstract_inverted_index.in | 11, 57, 76 |
| abstract_inverted_index.is | 64, 109, 157 |
| abstract_inverted_index.of | 9, 24, 74, 112, 145 |
| abstract_inverted_index.so | 66 |
| abstract_inverted_index.to | 54, 79, 93, 101, 151, 166, 173 |
| abstract_inverted_index.we | 26, 122 |
| abstract_inverted_index.The | 99 |
| abstract_inverted_index.and | 1, 15, 35, 47, 70, 106, 131, 190, 198 |
| abstract_inverted_index.any | 168 |
| abstract_inverted_index.are | 6, 202 |
| abstract_inverted_index.but | 153 |
| abstract_inverted_index.can | 27, 163 |
| abstract_inverted_index.for | 127, 136, 149, 204 |
| abstract_inverted_index.key | 100, 155 |
| abstract_inverted_index.our | 67, 103, 180 |
| abstract_inverted_index.out | 175 |
| abstract_inverted_index.run | 56 |
| abstract_inverted_index.the | 37, 81, 85, 182, 195, 207 |
| abstract_inverted_index.DARC | 52, 147 |
| abstract_inverted_index.Data | 62 |
| abstract_inverted_index.both | 194 |
| abstract_inverted_index.need | 184 |
| abstract_inverted_index.only | 185 |
| abstract_inverted_index.over | 95, 114 |
| abstract_inverted_index.real | 77, 104 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 90, 162 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.time | 78, 105 |
| abstract_inverted_index.use, | 152 |
| abstract_inverted_index.user | 183, 208 |
| abstract_inverted_index.way. | 61 |
| abstract_inverted_index.what | 32 |
| abstract_inverted_index.about | 84 |
| abstract_inverted_index.carry | 174 |
| abstract_inverted_index.leads | 92 |
| abstract_inverted_index.might | 209 |
| abstract_inverted_index.model | 189 |
| abstract_inverted_index.novel | 134 |
| abstract_inverted_index.pairs | 23, 73 |
| abstract_inverted_index.probe | 36 |
| abstract_inverted_index.risky | 2 |
| abstract_inverted_index.space | 192 |
| abstract_inverted_index.their | 29, 187 |
| abstract_inverted_index.them, | 34 |
| abstract_inverted_index.tools | 148 |
| abstract_inverted_index.using | 179 |
| abstract_inverted_index.(DARC) | 4 |
| abstract_inverted_index.choice | 3 |
| abstract_inverted_index.custom | 176 |
| abstract_inverted_index.derive | 123 |
| abstract_inverted_index.design | 118, 132, 191, 200 |
| abstract_inverted_index.encode | 186 |
| abstract_inverted_index.highly | 59 |
| abstract_inverted_index.making | 40 |
| abstract_inverted_index.models | 206 |
| abstract_inverted_index.number | 111, 144 |
| abstract_inverted_index.output | 129 |
| abstract_inverted_index.tasks. | 170 |
| abstract_inverted_index.write. | 210 |
| abstract_inverted_index.Delayed | 0 |
| abstract_inverted_index.affects | 33 |
| abstract_inverted_index.agent's | 20 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.costly, | 65 |
| abstract_inverted_index.current | 115 |
| abstract_inverted_index.design. | 140 |
| abstract_inverted_index.present | 43 |
| abstract_inverted_index.provide | 142 |
| abstract_inverted_index.toolbox | 49, 68, 161 |
| abstract_inverted_index.Bayesian | 116 |
| abstract_inverted_index.adaptive | 117, 139, 159, 177 |
| abstract_inverted_index.advances | 113 |
| abstract_inverted_index.allowing | 50 |
| abstract_inverted_index.approach | 46 |
| abstract_inverted_index.decision | 39 |
| abstract_inverted_index.discrete | 128 |
| abstract_inverted_index.extended | 165 |
| abstract_inverted_index.gathered | 83 |
| abstract_inverted_index.improved | 125 |
| abstract_inverted_index.maximise | 80 |
| abstract_inverted_index.problems | 130 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.software | 48 |
| abstract_inverted_index.toolbox, | 181 |
| abstract_inverted_index.algorithm | 135 |
| abstract_inverted_index.arbitrary | 205 |
| abstract_inverted_index.automated | 203 |
| abstract_inverted_index.automatic | 107 |
| abstract_inverted_index.economics | 14 |
| abstract_inverted_index.efficient | 60 |
| abstract_inverted_index.estimator | 126 |
| abstract_inverted_index.generates | 72 |
| abstract_inverted_index.inference | 197 |
| abstract_inverted_index.prospects | 25, 75 |
| abstract_inverted_index.releasing | 102 |
| abstract_inverted_index.virtually | 167 |
| abstract_inverted_index.adaptively | 71 |
| abstract_inverted_index.automating | 137 |
| abstract_inverted_index.collecting | 18 |
| abstract_inverted_index.collection | 63 |
| abstract_inverted_index.experiment | 160 |
| abstract_inverted_index.paradigms. | 98 |
| abstract_inverted_index.sequential | 138, 199 |
| abstract_inverted_index.subsequent | 196 |
| abstract_inverted_index.underlying | 38 |
| abstract_inverted_index.alternative | 96 |
| abstract_inverted_index.behavioural | 13, 188 |
| abstract_inverted_index.behaviours. | 87 |
| abstract_inverted_index.cornerstone | 8 |
| abstract_inverted_index.demonstrate | 89 |
| abstract_inverted_index.experiments | 5, 53, 178 |
| abstract_inverted_index.information | 82 |
| abstract_inverted_index.investigate | 31 |
| abstract_inverted_index.mechanisms. | 41 |
| abstract_inverted_index.particular, | 121, 172 |
| abstract_inverted_index.performance | 108 |
| abstract_inverted_index.preferences | 21 |
| abstract_inverted_index.psychology, | 12 |
| abstract_inverted_index.researchers | 150 |
| abstract_inverted_index.characterise | 28 |
| abstract_inverted_index.contribution | 156 |
| abstract_inverted_index.experimental | 97 |
| abstract_inverted_index.improvements | 94 |
| abstract_inverted_index.methodology. | 119 |
| abstract_inverted_index.optimisation | 201 |
| abstract_inverted_index.pre-prepared | 146 |
| abstract_inverted_index.preferences, | 30 |
| abstract_inverted_index.automatically | 69 |
| abstract_inverted_index.participant's | 86 |
| abstract_inverted_index.neuroeconomics. | 16 |
| abstract_inverted_index.state-of-the-art | 45 |
| abstract_inverted_index.2-alternative-choice | 169 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.73590592 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |