The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.11263
Detecting and recovering a low-rank signal in a noisy data matrix is a fundamental task in data analysis. Typically, this task is addressed by inspecting and manipulating the spectrum of the observed data, e.g., thresholding the singular values of the data matrix at a certain critical level. This approach is well-established in the case of homoskedastic noise, where the noise variance is identical across the entries. However, in numerous applications, the noise can be heteroskedastic, where the noise characteristics may vary considerably across the rows and columns of the data. In this scenario, the spectral behavior of the noise can differ significantly from the homoskedastic case, posing various challenges for signal detection and recovery. To address these challenges, we develop an adaptive normalization procedure that equalizes the average noise variance across the rows and columns of a given data matrix. Our proposed procedure is data-driven and fully automatic, supporting a broad range of noise distributions, variance patterns, and signal structures. Our approach relies on recent results in random matrix theory, which describe the resolvent of the noise via the so-called Dyson equation. By leveraging this relation, we can accurately infer the noise level in each row and each column directly from the resolvent of the data. We establish that in many cases, our normalization enforces the standard spectral behavior of homoskedastic noise -- the Marchenko-Pastur (MP) law, allowing for simple and reliable detection of signal components. Furthermore, we demonstrate that our approach can substantially improve signal recovery in heteroskedastic settings by manipulating the spectrum after normalization. Lastly, we apply our method to single-cell RNA sequencing and spatial transcriptomics data, showcasing accurate fits to the MP law after normalization.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.11263
- https://arxiv.org/pdf/2306.11263
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381573332
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381573332Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.11263Digital Object Identifier
- Title
-
The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and RecoveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-20Full publication date if available
- Authors
-
Boris Landa, Yuval KlugerList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.11263Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.11263Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.11263Direct OA link when available
- Concepts
-
Heteroscedasticity, Noise (video), Normalization (sociology), Algorithm, Mathematics, Computer science, Noise measurement, Noise reduction, Statistics, Artificial intelligence, Image (mathematics), Anthropology, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381573332 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.11263 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.11263 |
| ids.openalex | https://openalex.org/W4381573332 |
| fwci | |
| type | preprint |
| title | The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9907000064849854 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.979200005531311 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11716 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Random Matrices and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101104100 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6861261129379272 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1063540 |
| concepts[0].display_name | Heteroscedasticity |
| concepts[1].id | https://openalex.org/C99498987 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5775079131126404 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[1].display_name | Noise (video) |
| concepts[2].id | https://openalex.org/C136886441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5276661515235901 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[2].display_name | Normalization (sociology) |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47606366872787476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4485437572002411 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4425492286682129 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C29265498 |
| concepts[6].level | 3 |
| concepts[6].score | 0.44113945960998535 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7047719 |
| concepts[6].display_name | Noise measurement |
| concepts[7].id | https://openalex.org/C163294075 |
| concepts[7].level | 2 |
| concepts[7].score | 0.36882299184799194 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[7].display_name | Noise reduction |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2946070432662964 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2598438262939453 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C19165224 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[11].display_name | Anthropology |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/heteroscedasticity |
| keywords[0].score | 0.6861261129379272 |
| keywords[0].display_name | Heteroscedasticity |
| keywords[1].id | https://openalex.org/keywords/noise |
| keywords[1].score | 0.5775079131126404 |
| keywords[1].display_name | Noise (video) |
| keywords[2].id | https://openalex.org/keywords/normalization |
| keywords[2].score | 0.5276661515235901 |
| keywords[2].display_name | Normalization (sociology) |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.47606366872787476 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.4485437572002411 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4425492286682129 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/noise-measurement |
| keywords[6].score | 0.44113945960998535 |
| keywords[6].display_name | Noise measurement |
| keywords[7].id | https://openalex.org/keywords/noise-reduction |
| keywords[7].score | 0.36882299184799194 |
| keywords[7].display_name | Noise reduction |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.2946070432662964 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2598438262939453 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.11263 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.11263 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.11263 |
| locations[1].id | doi:10.48550/arxiv.2306.11263 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.11263 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5031605523 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Boris Landa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Landa, Boris |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020473435 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3035-071X |
| authorships[1].author.display_name | Yuval Kluger |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Kluger, Yuval |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.11263 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-22T00:00:00 |
| display_name | The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9907000064849854 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W3034789145, https://openalex.org/W2327107878, https://openalex.org/W1526760723, https://openalex.org/W2171117985, https://openalex.org/W2012356576, https://openalex.org/W2126659863, https://openalex.org/W4287867034, https://openalex.org/W3108403339, https://openalex.org/W3112120395, https://openalex.org/W4367628250 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.11263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.11263 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.11263 |
| primary_location.id | pmh:oai:arXiv.org:2306.11263 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.11263 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.11263 |
| publication_date | 2023-06-20 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 7, 12, 43, 136, 149 |
| abstract_inverted_index.-- | 222 |
| abstract_inverted_index.By | 182 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.MP | 274 |
| abstract_inverted_index.To | 114 |
| abstract_inverted_index.We | 206 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.at | 42 |
| abstract_inverted_index.be | 73 |
| abstract_inverted_index.by | 23, 250 |
| abstract_inverted_index.in | 6, 15, 51, 67, 166, 193, 209, 247 |
| abstract_inverted_index.is | 11, 21, 49, 61, 143 |
| abstract_inverted_index.of | 29, 38, 54, 87, 96, 135, 152, 174, 203, 219, 233 |
| abstract_inverted_index.on | 163 |
| abstract_inverted_index.to | 261, 272 |
| abstract_inverted_index.we | 118, 186, 237, 257 |
| abstract_inverted_index.Our | 140, 160 |
| abstract_inverted_index.RNA | 263 |
| abstract_inverted_index.and | 1, 25, 85, 112, 133, 145, 157, 196, 230, 265 |
| abstract_inverted_index.can | 72, 99, 187, 242 |
| abstract_inverted_index.for | 109, 228 |
| abstract_inverted_index.law | 275 |
| abstract_inverted_index.may | 79 |
| abstract_inverted_index.our | 212, 240, 259 |
| abstract_inverted_index.row | 195 |
| abstract_inverted_index.the | 27, 30, 35, 39, 52, 58, 64, 70, 76, 83, 88, 93, 97, 103, 126, 131, 172, 175, 178, 190, 201, 204, 215, 223, 252, 273 |
| abstract_inverted_index.via | 177 |
| abstract_inverted_index.(MP) | 225 |
| abstract_inverted_index.This | 47 |
| abstract_inverted_index.case | 53 |
| abstract_inverted_index.data | 9, 16, 40, 138 |
| abstract_inverted_index.each | 194, 197 |
| abstract_inverted_index.fits | 271 |
| abstract_inverted_index.from | 102, 200 |
| abstract_inverted_index.law, | 226 |
| abstract_inverted_index.many | 210 |
| abstract_inverted_index.rows | 84, 132 |
| abstract_inverted_index.task | 14, 20 |
| abstract_inverted_index.that | 124, 208, 239 |
| abstract_inverted_index.this | 19, 91, 184 |
| abstract_inverted_index.vary | 80 |
| abstract_inverted_index.Dyson | 180 |
| abstract_inverted_index.after | 254, 276 |
| abstract_inverted_index.apply | 258 |
| abstract_inverted_index.broad | 150 |
| abstract_inverted_index.case, | 105 |
| abstract_inverted_index.data, | 32, 268 |
| abstract_inverted_index.data. | 89, 205 |
| abstract_inverted_index.e.g., | 33 |
| abstract_inverted_index.fully | 146 |
| abstract_inverted_index.given | 137 |
| abstract_inverted_index.infer | 189 |
| abstract_inverted_index.level | 192 |
| abstract_inverted_index.noise | 59, 71, 77, 98, 128, 153, 176, 191, 221 |
| abstract_inverted_index.noisy | 8 |
| abstract_inverted_index.range | 151 |
| abstract_inverted_index.these | 116 |
| abstract_inverted_index.where | 57, 75 |
| abstract_inverted_index.which | 170 |
| abstract_inverted_index.across | 63, 82, 130 |
| abstract_inverted_index.cases, | 211 |
| abstract_inverted_index.column | 198 |
| abstract_inverted_index.differ | 100 |
| abstract_inverted_index.level. | 46 |
| abstract_inverted_index.matrix | 10, 41, 168 |
| abstract_inverted_index.method | 260 |
| abstract_inverted_index.noise, | 56 |
| abstract_inverted_index.posing | 106 |
| abstract_inverted_index.random | 167 |
| abstract_inverted_index.recent | 164 |
| abstract_inverted_index.relies | 162 |
| abstract_inverted_index.signal | 5, 110, 158, 234, 245 |
| abstract_inverted_index.simple | 229 |
| abstract_inverted_index.values | 37 |
| abstract_inverted_index.Lastly, | 256 |
| abstract_inverted_index.address | 115 |
| abstract_inverted_index.average | 127 |
| abstract_inverted_index.certain | 44 |
| abstract_inverted_index.columns | 86, 134 |
| abstract_inverted_index.develop | 119 |
| abstract_inverted_index.improve | 244 |
| abstract_inverted_index.matrix. | 139 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.spatial | 266 |
| abstract_inverted_index.theory, | 169 |
| abstract_inverted_index.various | 107 |
| abstract_inverted_index.However, | 66 |
| abstract_inverted_index.accurate | 270 |
| abstract_inverted_index.adaptive | 121 |
| abstract_inverted_index.allowing | 227 |
| abstract_inverted_index.approach | 48, 161, 241 |
| abstract_inverted_index.behavior | 95, 218 |
| abstract_inverted_index.critical | 45 |
| abstract_inverted_index.describe | 171 |
| abstract_inverted_index.directly | 199 |
| abstract_inverted_index.enforces | 214 |
| abstract_inverted_index.entries. | 65 |
| abstract_inverted_index.low-rank | 4 |
| abstract_inverted_index.numerous | 68 |
| abstract_inverted_index.observed | 31 |
| abstract_inverted_index.proposed | 141 |
| abstract_inverted_index.recovery | 246 |
| abstract_inverted_index.reliable | 231 |
| abstract_inverted_index.settings | 249 |
| abstract_inverted_index.singular | 36 |
| abstract_inverted_index.spectral | 94, 217 |
| abstract_inverted_index.spectrum | 28, 253 |
| abstract_inverted_index.standard | 216 |
| abstract_inverted_index.variance | 60, 129, 155 |
| abstract_inverted_index.Detecting | 0 |
| abstract_inverted_index.addressed | 22 |
| abstract_inverted_index.analysis. | 17 |
| abstract_inverted_index.detection | 111, 232 |
| abstract_inverted_index.equalizes | 125 |
| abstract_inverted_index.equation. | 181 |
| abstract_inverted_index.establish | 207 |
| abstract_inverted_index.identical | 62 |
| abstract_inverted_index.patterns, | 156 |
| abstract_inverted_index.procedure | 123, 142 |
| abstract_inverted_index.recovery. | 113 |
| abstract_inverted_index.relation, | 185 |
| abstract_inverted_index.resolvent | 173, 202 |
| abstract_inverted_index.scenario, | 92 |
| abstract_inverted_index.so-called | 179 |
| abstract_inverted_index.Typically, | 18 |
| abstract_inverted_index.accurately | 188 |
| abstract_inverted_index.automatic, | 147 |
| abstract_inverted_index.challenges | 108 |
| abstract_inverted_index.inspecting | 24 |
| abstract_inverted_index.leveraging | 183 |
| abstract_inverted_index.recovering | 2 |
| abstract_inverted_index.sequencing | 264 |
| abstract_inverted_index.showcasing | 269 |
| abstract_inverted_index.supporting | 148 |
| abstract_inverted_index.challenges, | 117 |
| abstract_inverted_index.components. | 235 |
| abstract_inverted_index.data-driven | 144 |
| abstract_inverted_index.demonstrate | 238 |
| abstract_inverted_index.fundamental | 13 |
| abstract_inverted_index.single-cell | 262 |
| abstract_inverted_index.structures. | 159 |
| abstract_inverted_index.Furthermore, | 236 |
| abstract_inverted_index.considerably | 81 |
| abstract_inverted_index.manipulating | 26, 251 |
| abstract_inverted_index.thresholding | 34 |
| abstract_inverted_index.applications, | 69 |
| abstract_inverted_index.homoskedastic | 55, 104, 220 |
| abstract_inverted_index.normalization | 122, 213 |
| abstract_inverted_index.significantly | 101 |
| abstract_inverted_index.substantially | 243 |
| abstract_inverted_index.distributions, | 154 |
| abstract_inverted_index.normalization. | 255, 277 |
| abstract_inverted_index.characteristics | 78 |
| abstract_inverted_index.heteroskedastic | 248 |
| abstract_inverted_index.transcriptomics | 267 |
| abstract_inverted_index.Marchenko-Pastur | 224 |
| abstract_inverted_index.heteroskedastic, | 74 |
| abstract_inverted_index.well-established | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |