The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.rse.2024.114291
Hyperspectral images are increasingly being used in classification and identification. Data users prefer hyperspectral imagery with high spatial resolution, finer spectral resolution, and high signal-to-noise ratio (SNR). However, tradeoffs exist in these core parameters in imagery acquired by different hyperspectral sensor systems. Data users may find it difficult to utilize all the advantages of hyperspectral imagery. How to select hyperspectral data with optimal parameter configuration has been one of the essential issues for data users, which also affects the back-end applications. With advancements in computer science, various artificial intelligence algorithms from conventional machine learning to deep learning have been utilized for hyperspectral images classification and identification. Few researchers study the mechanism between the core parameters of hyperspectral imaging spectrometers and advanced artificial intelligence algorithms, which affects the application efficiency and accuracy. In this paper, we delved into the evolution of machine learning and deep learning models applied to imagery acquired by different hyperspectral sensor systems having different SNR, spectral, and spatial resolutions. Additionally, we also considered the tradeoffs among the core parameters of hyperspectral imagers. We used two conventional machine learning models, including the classification and regression tree (CART) and random forest (RF), two deep learning methods based on convolution neural network architectures—3D convolutional neural network (3D-CNN) and hamida, and two deep learning methods based on vision transformers architectures—transformer models vision transformer (VIT) and robust vision transformer (RVT), to compare the characteristics of different algorithms. In addition, five hyperspectral datasets with different species categories and scene distributions and aggregated datasets with different spatial resolutions, spectral resolutions, and SNRs were used to validate our study. The experimental results indicate that: (1) The overall accuracy (OA) using CART, RF, 3D-CNN, and VIT models decreased with coarser spectral resolution, but almost remained unchanged using the RVT classifier. The number of class and classification species affect the results. (2) The influence of spatial resolution on classification accuracy is related to the scene complexity, target size, and classification purpose. The coarser spatial resolution can achieve higher OA than the original spatial resolution for the uniform scene distribution. For the datasets with small objects and intersections of different species, OA first increased, plateaued, and then decreased with coarser spatial resolution. (3) The SNR has an obvious impact on OA for the CART and RF classifiers, and the impact decreased for deep learning models, especially for the VIT and RVT models, which were almost unaffected by SNR. Additionally, slight variations in experimental results were observed for datasets with different scene distributions and categories. Furthermore, we conducted a detailed analysis of the role of traditional machine learning and deep learning models in the experimental outcomes. The study can provide insights into understanding the relationship between the core parameters of hyperspectral imager and the artificial intelligence algorithms used for hyperspectral classification. It serves to bridge the knowledge gap between the front-end hyperspectral imager, mid-end model, and back-end applications, and further promote the development of hyperspectral imaging technology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.rse.2024.114291
- OA Status
- hybrid
- Cited By
- 16
- References
- 95
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400187534
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400187534Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.rse.2024.114291Digital Object Identifier
- Title
-
The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-01Full publication date if available
- Authors
-
Jianxin Jia, Xiaorou Zheng, Yueming Wang, Yuwei Chen, Mika Karjalainen, Shoubin Dong, Runuo Lu, Jianyu Wang, Juha HyyppäList of authors in order
- Landing page
-
https://doi.org/10.1016/j.rse.2024.114291Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.rse.2024.114291Direct OA link when available
- Concepts
-
Hyperspectral imaging, Remote sensing, Noise (video), Environmental science, Signal-to-noise ratio (imaging), Computer science, Artificial intelligence, Geology, Image (mathematics), TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
95Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400187534 |
|---|---|
| doi | https://doi.org/10.1016/j.rse.2024.114291 |
| ids.doi | https://doi.org/10.1016/j.rse.2024.114291 |
| ids.openalex | https://openalex.org/W4400187534 |
| fwci | 9.83896002 |
| type | article |
| title | The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions |
| awards[0].id | https://openalex.org/G137841415 |
| awards[0].funder_id | https://openalex.org/F4320321108 |
| awards[0].display_name | |
| awards[0].funder_award_id | 349229 |
| awards[0].funder_display_name | Academy of Finland |
| biblio.issue | |
| biblio.volume | 311 |
| biblio.last_page | 114291 |
| biblio.first_page | 114291 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T12157 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Geochemistry and Geologic Mapping |
| funders[0].id | https://openalex.org/F4320321108 |
| funders[0].ror | https://ror.org/05k73zm37 |
| funders[0].display_name | Academy of Finland |
| is_xpac | False |
| apc_list.value | 4070 |
| apc_list.currency | USD |
| apc_list.value_usd | 4070 |
| apc_paid.value | 4070 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4070 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9011662006378174 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8189624547958374 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5478578805923462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4926820397377014 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C13944312 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4769412577152252 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7512748 |
| concepts[4].display_name | Signal-to-noise ratio (imaging) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4142306447029114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.352294921875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3092579245567322 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.12262791395187378 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10678914189338684 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9011662006378174 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.8189624547958374 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5478578805923462 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.4926820397377014 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/signal-to-noise-ratio |
| keywords[4].score | 0.4769412577152252 |
| keywords[4].display_name | Signal-to-noise ratio (imaging) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4142306447029114 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.352294921875 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.3092579245567322 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.12262791395187378 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.10678914189338684 |
| keywords[9].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1016/j.rse.2024.114291 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S141808269 |
| locations[0].source.issn | 0034-4257, 1879-0704 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0034-4257 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Remote Sensing of Environment |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing of Environment |
| locations[0].landing_page_url | https://doi.org/10.1016/j.rse.2024.114291 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5084735407 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4366-4547 |
| authorships[0].author.display_name | Jianxin Jia |
| authorships[0].countries | FI |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[0].institutions[0].id | https://openalex.org/I33876163 |
| authorships[0].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[0].institutions[0].country_code | FI |
| authorships[0].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianxin Jia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[1].author.id | https://openalex.org/A5087587101 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4941-5907 |
| authorships[1].author.display_name | Xiaorou Zheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaorou Zheng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[2].author.id | https://openalex.org/A5100741369 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0791-4836 |
| authorships[2].author.display_name | Yueming Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210135723 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210135723 |
| authorships[2].institutions[0].ror | https://ror.org/02txedb84 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Institute of Technical Physics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yueming Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[3].author.id | https://openalex.org/A5100374346 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0148-3609 |
| authorships[3].author.display_name | Yuwei Chen |
| authorships[3].countries | FI |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[3].institutions[0].id | https://openalex.org/I33876163 |
| authorships[3].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[3].institutions[0].country_code | FI |
| authorships[3].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuwei Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[4].author.id | https://openalex.org/A5068228319 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4320-8007 |
| authorships[4].author.display_name | Mika Karjalainen |
| authorships[4].countries | FI |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[4].institutions[0].id | https://openalex.org/I33876163 |
| authorships[4].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[4].institutions[0].country_code | FI |
| authorships[4].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mika Karjalainen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[5].author.id | https://openalex.org/A5052760299 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0153-850X |
| authorships[5].author.display_name | Shoubin Dong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[5].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[5].institutions[0].id | https://openalex.org/I90610280 |
| authorships[5].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | South China University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shoubin Dong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[6].author.id | https://openalex.org/A5109214711 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Runuo Lu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[6].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[6].institutions[0].id | https://openalex.org/I90610280 |
| authorships[6].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | South China University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Runuo Lu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China |
| authorships[7].author.id | https://openalex.org/A5100398947 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6611-8528 |
| authorships[7].author.display_name | Jianyu Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210135723 |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210135723 |
| authorships[7].institutions[0].ror | https://ror.org/02txedb84 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shanghai Institute of Technical Physics |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jianyu Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[8].author.id | https://openalex.org/A5033042071 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5360-4017 |
| authorships[8].author.display_name | Juha Hyyppä |
| authorships[8].countries | FI |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| authorships[8].institutions[0].id | https://openalex.org/I33876163 |
| authorships[8].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[8].institutions[0].type | facility |
| authorships[8].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[8].institutions[0].country_code | FI |
| authorships[8].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Juha Hyyppä |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute, Espoo FI-02150, Finland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.rse.2024.114291 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2070598848, https://openalex.org/W2385371209, https://openalex.org/W4250051149, https://openalex.org/W2083270190, https://openalex.org/W1991437568 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.rse.2024.114291 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S141808269 |
| best_oa_location.source.issn | 0034-4257, 1879-0704 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0034-4257 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Remote Sensing of Environment |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing of Environment |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.rse.2024.114291 |
| primary_location.id | doi:10.1016/j.rse.2024.114291 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S141808269 |
| primary_location.source.issn | 0034-4257, 1879-0704 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0034-4257 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Remote Sensing of Environment |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing of Environment |
| primary_location.landing_page_url | https://doi.org/10.1016/j.rse.2024.114291 |
| publication_date | 2024-07-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4285085722, https://openalex.org/W3136224375, https://openalex.org/W2962770389, https://openalex.org/W2557801907, https://openalex.org/W2808098982, https://openalex.org/W6782260996, https://openalex.org/W4212883601, https://openalex.org/W2911964244, https://openalex.org/W6843735874, https://openalex.org/W2099129687, https://openalex.org/W2412782625, https://openalex.org/W2317739826, https://openalex.org/W1966285673, https://openalex.org/W1984232434, https://openalex.org/W1967621805, https://openalex.org/W3186917005, https://openalex.org/W4296558555, https://openalex.org/W4385748513, https://openalex.org/W4220833120, https://openalex.org/W6754852571, https://openalex.org/W6839631182, https://openalex.org/W6678099531, https://openalex.org/W2024520442, https://openalex.org/W2154255569, https://openalex.org/W4313584312, https://openalex.org/W6806499870, https://openalex.org/W2294004470, https://openalex.org/W2101711129, https://openalex.org/W6791866641, https://openalex.org/W4285187901, https://openalex.org/W1521436688, https://openalex.org/W2987475181, https://openalex.org/W6798797464, https://openalex.org/W6839512098, https://openalex.org/W2604086375, https://openalex.org/W2102237022, https://openalex.org/W2166307050, https://openalex.org/W2942454403, https://openalex.org/W3014999631, https://openalex.org/W4224315175, https://openalex.org/W4315795673, https://openalex.org/W6758492113, https://openalex.org/W6771722613, https://openalex.org/W2998595112, https://openalex.org/W6756063518, https://openalex.org/W4297920830, https://openalex.org/W3132859298, https://openalex.org/W2081895269, https://openalex.org/W6842931160, https://openalex.org/W3024007459, https://openalex.org/W3160807329, https://openalex.org/W2890338840, https://openalex.org/W2184933509, https://openalex.org/W4212894818, https://openalex.org/W2947113878, https://openalex.org/W2900417775, https://openalex.org/W2176623756, https://openalex.org/W3135366015, https://openalex.org/W3185175284, https://openalex.org/W2161355009, https://openalex.org/W2351141817, https://openalex.org/W2990014820, https://openalex.org/W2106595207, https://openalex.org/W4386945847, https://openalex.org/W4313229413, https://openalex.org/W6808400268, https://openalex.org/W2999625495, https://openalex.org/W4312051511, https://openalex.org/W2885941974, https://openalex.org/W4294612069, https://openalex.org/W4296220152, https://openalex.org/W2142827986, https://openalex.org/W6797399245, https://openalex.org/W4361214862, https://openalex.org/W6840360099, https://openalex.org/W4312637404, https://openalex.org/W2059377398, https://openalex.org/W2768023117, https://openalex.org/W3036016333, https://openalex.org/W3049655825, https://openalex.org/W3041133507, https://openalex.org/W3211490618, https://openalex.org/W3105357426, https://openalex.org/W4254779032, https://openalex.org/W3081213963, https://openalex.org/W3094502228, https://openalex.org/W4285111340, https://openalex.org/W4285124290, https://openalex.org/W4206022314, https://openalex.org/W4251578142, https://openalex.org/W4280638333, https://openalex.org/W3183280063, https://openalex.org/W3098388691, https://openalex.org/W789541653, https://openalex.org/W4296339430 |
| referenced_works_count | 95 |
| abstract_inverted_index.a | 419 |
| abstract_inverted_index.In | 131, 235 |
| abstract_inverted_index.It | 462 |
| abstract_inverted_index.OA | 331, 353, 372 |
| abstract_inverted_index.RF | 377 |
| abstract_inverted_index.We | 175 |
| abstract_inverted_index.an | 368 |
| abstract_inverted_index.by | 37, 150, 398 |
| abstract_inverted_index.in | 6, 30, 34, 83, 403, 433 |
| abstract_inverted_index.is | 313 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 53, 68, 115, 139, 172, 232, 296, 307, 350, 422, 425, 450, 484 |
| abstract_inverted_index.on | 198, 215, 310, 371 |
| abstract_inverted_index.to | 48, 57, 94, 147, 228, 260, 315, 464 |
| abstract_inverted_index.we | 134, 163, 417 |
| abstract_inverted_index.(1) | 269 |
| abstract_inverted_index.(2) | 304 |
| abstract_inverted_index.(3) | 364 |
| abstract_inverted_index.Few | 106 |
| abstract_inverted_index.For | 342 |
| abstract_inverted_index.How | 56 |
| abstract_inverted_index.RF, | 276 |
| abstract_inverted_index.RVT | 292, 392 |
| abstract_inverted_index.SNR | 366 |
| abstract_inverted_index.The | 264, 270, 294, 305, 324, 365, 437 |
| abstract_inverted_index.VIT | 279, 390 |
| abstract_inverted_index.all | 50 |
| abstract_inverted_index.and | 8, 22, 104, 119, 129, 142, 159, 185, 189, 207, 209, 223, 244, 247, 256, 278, 298, 321, 348, 357, 376, 379, 391, 414, 429, 453, 476, 479 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.but | 286 |
| abstract_inverted_index.can | 328, 439 |
| abstract_inverted_index.for | 72, 100, 337, 373, 383, 388, 408, 459 |
| abstract_inverted_index.gap | 468 |
| abstract_inverted_index.has | 65, 367 |
| abstract_inverted_index.may | 44 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.our | 262 |
| abstract_inverted_index.the | 51, 69, 78, 109, 112, 126, 137, 166, 169, 183, 230, 291, 302, 316, 333, 338, 343, 374, 380, 389, 423, 434, 444, 447, 454, 466, 470, 482 |
| abstract_inverted_index.two | 177, 193, 210 |
| abstract_inverted_index.(OA) | 273 |
| abstract_inverted_index.CART | 375 |
| abstract_inverted_index.Data | 10, 42 |
| abstract_inverted_index.SNR, | 157 |
| abstract_inverted_index.SNR. | 399 |
| abstract_inverted_index.SNRs | 257 |
| abstract_inverted_index.With | 81 |
| abstract_inverted_index.also | 76, 164 |
| abstract_inverted_index.been | 66, 98 |
| abstract_inverted_index.core | 32, 113, 170, 448 |
| abstract_inverted_index.data | 60, 73 |
| abstract_inverted_index.deep | 95, 143, 194, 211, 384, 430 |
| abstract_inverted_index.find | 45 |
| abstract_inverted_index.five | 237 |
| abstract_inverted_index.from | 90 |
| abstract_inverted_index.have | 97 |
| abstract_inverted_index.high | 16, 23 |
| abstract_inverted_index.into | 136, 442 |
| abstract_inverted_index.role | 424 |
| abstract_inverted_index.than | 332 |
| abstract_inverted_index.then | 358 |
| abstract_inverted_index.this | 132 |
| abstract_inverted_index.tree | 187 |
| abstract_inverted_index.used | 5, 176, 259, 458 |
| abstract_inverted_index.were | 258, 395, 406 |
| abstract_inverted_index.with | 15, 61, 240, 250, 282, 345, 360, 410 |
| abstract_inverted_index.(RF), | 192 |
| abstract_inverted_index.(VIT) | 222 |
| abstract_inverted_index.CART, | 275 |
| abstract_inverted_index.among | 168 |
| abstract_inverted_index.based | 197, 214 |
| abstract_inverted_index.being | 4 |
| abstract_inverted_index.class | 297 |
| abstract_inverted_index.exist | 29 |
| abstract_inverted_index.finer | 19 |
| abstract_inverted_index.first | 354 |
| abstract_inverted_index.ratio | 25 |
| abstract_inverted_index.scene | 245, 317, 340, 412 |
| abstract_inverted_index.size, | 320 |
| abstract_inverted_index.small | 346 |
| abstract_inverted_index.study | 108, 438 |
| abstract_inverted_index.that: | 268 |
| abstract_inverted_index.these | 31 |
| abstract_inverted_index.users | 11, 43 |
| abstract_inverted_index.using | 274, 290 |
| abstract_inverted_index.which | 75, 124, 394 |
| abstract_inverted_index.(CART) | 188 |
| abstract_inverted_index.(RVT), | 227 |
| abstract_inverted_index.(SNR). | 26 |
| abstract_inverted_index.affect | 301 |
| abstract_inverted_index.almost | 287, 396 |
| abstract_inverted_index.bridge | 465 |
| abstract_inverted_index.delved | 135 |
| abstract_inverted_index.forest | 191 |
| abstract_inverted_index.having | 155 |
| abstract_inverted_index.higher | 330 |
| abstract_inverted_index.imager | 452 |
| abstract_inverted_index.images | 1, 102 |
| abstract_inverted_index.impact | 370, 381 |
| abstract_inverted_index.issues | 71 |
| abstract_inverted_index.model, | 475 |
| abstract_inverted_index.models | 145, 219, 280, 432 |
| abstract_inverted_index.neural | 200, 204 |
| abstract_inverted_index.number | 295 |
| abstract_inverted_index.paper, | 133 |
| abstract_inverted_index.prefer | 12 |
| abstract_inverted_index.random | 190 |
| abstract_inverted_index.robust | 224 |
| abstract_inverted_index.select | 58 |
| abstract_inverted_index.sensor | 40, 153 |
| abstract_inverted_index.serves | 463 |
| abstract_inverted_index.slight | 401 |
| abstract_inverted_index.study. | 263 |
| abstract_inverted_index.target | 319 |
| abstract_inverted_index.users, | 74 |
| abstract_inverted_index.vision | 216, 220, 225 |
| abstract_inverted_index.3D-CNN, | 277 |
| abstract_inverted_index.achieve | 329 |
| abstract_inverted_index.affects | 77, 125 |
| abstract_inverted_index.applied | 146 |
| abstract_inverted_index.between | 111, 446, 469 |
| abstract_inverted_index.coarser | 283, 325, 361 |
| abstract_inverted_index.compare | 229 |
| abstract_inverted_index.further | 480 |
| abstract_inverted_index.hamida, | 208 |
| abstract_inverted_index.imager, | 473 |
| abstract_inverted_index.imagery | 14, 35, 148 |
| abstract_inverted_index.imaging | 117, 486 |
| abstract_inverted_index.machine | 92, 140, 179, 427 |
| abstract_inverted_index.methods | 196, 213 |
| abstract_inverted_index.mid-end | 474 |
| abstract_inverted_index.models, | 181, 386, 393 |
| abstract_inverted_index.network | 201, 205 |
| abstract_inverted_index.objects | 347 |
| abstract_inverted_index.obvious | 369 |
| abstract_inverted_index.optimal | 62 |
| abstract_inverted_index.overall | 271 |
| abstract_inverted_index.promote | 481 |
| abstract_inverted_index.provide | 440 |
| abstract_inverted_index.related | 314 |
| abstract_inverted_index.results | 266, 405 |
| abstract_inverted_index.spatial | 17, 160, 252, 308, 326, 335, 362 |
| abstract_inverted_index.species | 242, 300 |
| abstract_inverted_index.systems | 154 |
| abstract_inverted_index.uniform | 339 |
| abstract_inverted_index.utilize | 49 |
| abstract_inverted_index.various | 86 |
| abstract_inverted_index.(3D-CNN) | 206 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.accuracy | 272, 312 |
| abstract_inverted_index.acquired | 36, 149 |
| abstract_inverted_index.advanced | 120 |
| abstract_inverted_index.analysis | 421 |
| abstract_inverted_index.back-end | 79, 477 |
| abstract_inverted_index.computer | 84 |
| abstract_inverted_index.datasets | 239, 249, 344, 409 |
| abstract_inverted_index.detailed | 420 |
| abstract_inverted_index.imagers. | 174 |
| abstract_inverted_index.imagery. | 55 |
| abstract_inverted_index.indicate | 267 |
| abstract_inverted_index.insights | 441 |
| abstract_inverted_index.learning | 93, 96, 141, 144, 180, 195, 212, 385, 428, 431 |
| abstract_inverted_index.observed | 407 |
| abstract_inverted_index.original | 334 |
| abstract_inverted_index.purpose. | 323 |
| abstract_inverted_index.remained | 288 |
| abstract_inverted_index.results. | 303 |
| abstract_inverted_index.science, | 85 |
| abstract_inverted_index.species, | 352 |
| abstract_inverted_index.spectral | 20, 254, 284 |
| abstract_inverted_index.systems. | 41 |
| abstract_inverted_index.utilized | 99 |
| abstract_inverted_index.validate | 261 |
| abstract_inverted_index.accuracy. | 130 |
| abstract_inverted_index.addition, | 236 |
| abstract_inverted_index.conducted | 418 |
| abstract_inverted_index.decreased | 281, 359, 382 |
| abstract_inverted_index.different | 38, 151, 156, 233, 241, 251, 351, 411 |
| abstract_inverted_index.difficult | 47 |
| abstract_inverted_index.essential | 70 |
| abstract_inverted_index.evolution | 138 |
| abstract_inverted_index.front-end | 471 |
| abstract_inverted_index.including | 182 |
| abstract_inverted_index.influence | 306 |
| abstract_inverted_index.knowledge | 467 |
| abstract_inverted_index.mechanism | 110 |
| abstract_inverted_index.outcomes. | 436 |
| abstract_inverted_index.parameter | 63 |
| abstract_inverted_index.spectral, | 158 |
| abstract_inverted_index.tradeoffs | 28, 167 |
| abstract_inverted_index.unchanged | 289 |
| abstract_inverted_index.advantages | 52 |
| abstract_inverted_index.aggregated | 248 |
| abstract_inverted_index.algorithms | 89, 457 |
| abstract_inverted_index.artificial | 87, 121, 455 |
| abstract_inverted_index.categories | 243 |
| abstract_inverted_index.considered | 165 |
| abstract_inverted_index.efficiency | 128 |
| abstract_inverted_index.especially | 387 |
| abstract_inverted_index.increased, | 355 |
| abstract_inverted_index.parameters | 33, 114, 171, 449 |
| abstract_inverted_index.plateaued, | 356 |
| abstract_inverted_index.regression | 186 |
| abstract_inverted_index.resolution | 309, 327, 336 |
| abstract_inverted_index.unaffected | 397 |
| abstract_inverted_index.variations | 402 |
| abstract_inverted_index.algorithms, | 123 |
| abstract_inverted_index.algorithms. | 234 |
| abstract_inverted_index.application | 127 |
| abstract_inverted_index.categories. | 415 |
| abstract_inverted_index.classifier. | 293 |
| abstract_inverted_index.complexity, | 318 |
| abstract_inverted_index.convolution | 199 |
| abstract_inverted_index.development | 483 |
| abstract_inverted_index.researchers | 107 |
| abstract_inverted_index.resolution, | 18, 21, 285 |
| abstract_inverted_index.resolution. | 363 |
| abstract_inverted_index.technology. | 487 |
| abstract_inverted_index.traditional | 426 |
| abstract_inverted_index.transformer | 221, 226 |
| abstract_inverted_index.Furthermore, | 416 |
| abstract_inverted_index.advancements | 82 |
| abstract_inverted_index.classifiers, | 378 |
| abstract_inverted_index.conventional | 91, 178 |
| abstract_inverted_index.experimental | 265, 404, 435 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.intelligence | 88, 122, 456 |
| abstract_inverted_index.relationship | 445 |
| abstract_inverted_index.resolutions, | 253, 255 |
| abstract_inverted_index.resolutions. | 161 |
| abstract_inverted_index.transformers | 217 |
| abstract_inverted_index.Additionally, | 162, 400 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.applications, | 478 |
| abstract_inverted_index.applications. | 80 |
| abstract_inverted_index.configuration | 64 |
| abstract_inverted_index.convolutional | 203 |
| abstract_inverted_index.distribution. | 341 |
| abstract_inverted_index.distributions | 246, 413 |
| abstract_inverted_index.hyperspectral | 13, 39, 54, 59, 101, 116, 152, 173, 238, 451, 460, 472, 485 |
| abstract_inverted_index.intersections | 349 |
| abstract_inverted_index.spectrometers | 118 |
| abstract_inverted_index.understanding | 443 |
| abstract_inverted_index.classification | 7, 103, 184, 299, 311, 322 |
| abstract_inverted_index.characteristics | 231 |
| abstract_inverted_index.classification. | 461 |
| abstract_inverted_index.identification. | 9, 105 |
| abstract_inverted_index.signal-to-noise | 24 |
| abstract_inverted_index.architectures—3D | 202 |
| abstract_inverted_index.architectures—transformer | 218 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5087587101 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I90610280 |
| citation_normalized_percentile.value | 0.971225 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |