The effect of dataset construction and data pre-processing on the eXtreme Gradient Boosting algorithm applied to head rice yield prediction in Australia Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.compag.2024.108716
Dataset quality heavily impacts the predictive performance of data-driven modelling. This issue can be exacerbated in the prediction of agricultural production due to the complex interactions between the climate, the environment and the way the plant is affected by these conditions during the season. This study aims to create an empirical model to predict Head Rice Yield (HRY), the primary quality metric for rice growers and millers globally. Model development focused on an industry-level dataset made available by SunRice, Australia's most prominent rice trading company. Using the SunRice data, two dataset construction methods were implemented to evaluate the effect of dataset construction and data pre-processing on model accuracy. The first dataset construction method was based on aggregating meteorological conditions using estimates of phenology, while the second method used aggregations based on defined lengths of time. Deviations of each construction method were generated to explore the impact of varying levels in aggregation stages and stage lengths. Each constructed dataset underwent feature selection prior to model training using the XGBoost algorithm with Leave-One-Year-Out Cross-Validation. The time-based dataset construction method proved to be the most accurate dataset construction method, producing the highest mean model accuracy scores across all pre-processing and model training configurations. The single most accurate model came from the two-week aggregation dataset, which yielded a 125% increase in Lin's Concordance Correlation Coefficient compared to the worst-performing model produced in this study. Developing a highly accurate model that allows for crop stage knowledge discovery is critical for uncovering actionable insights to improve the management of future rice crops for HRY. The knowledge discovered in this study provides actionable insights to improve the management of future rice crops for HRY. The developed model demonstrates the potential for SunRice to predict HRY at the receival point to optimise post-harvest handling and milling. When matched to region-specific data, the dataset construction methods explored can be replicated in other rice-growing regions globally.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.compag.2024.108716
- OA Status
- hybrid
- Cited By
- 21
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392077012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392077012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.compag.2024.108716Digital Object Identifier
- Title
-
The effect of dataset construction and data pre-processing on the eXtreme Gradient Boosting algorithm applied to head rice yield prediction in AustraliaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-22Full publication date if available
- Authors
-
Allister Clarke, Deborah Yates, Christopher Blanchard, Md Zahidul Islam, Ralph Ford, Sabih ur Rehman, R. WalshList of authors in order
- Landing page
-
https://doi.org/10.1016/j.compag.2024.108716Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.compag.2024.108716Direct OA link when available
- Concepts
-
Head (geology), Boosting (machine learning), Gradient boosting, Algorithm, Yield (engineering), Computer science, Data processing, Artificial intelligence, Data mining, Pattern recognition (psychology), Random forest, Geology, Database, Materials science, Metallurgy, GeomorphologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 13Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392077012 |
|---|---|
| doi | https://doi.org/10.1016/j.compag.2024.108716 |
| ids.doi | https://doi.org/10.1016/j.compag.2024.108716 |
| ids.openalex | https://openalex.org/W4392077012 |
| fwci | 16.42303062 |
| type | article |
| title | The effect of dataset construction and data pre-processing on the eXtreme Gradient Boosting algorithm applied to head rice yield prediction in Australia |
| biblio.issue | |
| biblio.volume | 219 |
| biblio.last_page | 108716 |
| biblio.first_page | 108716 |
| topics[0].id | https://openalex.org/T12045 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Rice Cultivation and Yield Improvement |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9796000123023987 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T10439 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9652000069618225 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Climate change impacts on agriculture |
| is_xpac | False |
| apc_list.value | 3680 |
| apc_list.currency | USD |
| apc_list.value_usd | 3680 |
| apc_paid.value | 3680 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3680 |
| concepts[0].id | https://openalex.org/C2780312720 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6478121280670166 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5689100 |
| concepts[0].display_name | Head (geology) |
| concepts[1].id | https://openalex.org/C46686674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6469829082489014 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[1].display_name | Boosting (machine learning) |
| concepts[2].id | https://openalex.org/C70153297 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5496217012405396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[2].display_name | Gradient boosting |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5106902718544006 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C134121241 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4720509946346283 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[4].display_name | Yield (engineering) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.45420214533805847 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C138827492 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4360276758670807 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[6].display_name | Data processing |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41179168224334717 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40086501836776733 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3431433141231537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C169258074 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2243095338344574 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[10].display_name | Random forest |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.14741498231887817 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07574230432510376 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07282117009162903 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C191897082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[14].display_name | Metallurgy |
| concepts[15].id | https://openalex.org/C114793014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[15].display_name | Geomorphology |
| keywords[0].id | https://openalex.org/keywords/head |
| keywords[0].score | 0.6478121280670166 |
| keywords[0].display_name | Head (geology) |
| keywords[1].id | https://openalex.org/keywords/boosting |
| keywords[1].score | 0.6469829082489014 |
| keywords[1].display_name | Boosting (machine learning) |
| keywords[2].id | https://openalex.org/keywords/gradient-boosting |
| keywords[2].score | 0.5496217012405396 |
| keywords[2].display_name | Gradient boosting |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5106902718544006 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/yield |
| keywords[4].score | 0.4720509946346283 |
| keywords[4].display_name | Yield (engineering) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.45420214533805847 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/data-processing |
| keywords[6].score | 0.4360276758670807 |
| keywords[6].display_name | Data processing |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.41179168224334717 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.40086501836776733 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3431433141231537 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/random-forest |
| keywords[10].score | 0.2243095338344574 |
| keywords[10].display_name | Random forest |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.14741498231887817 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.07574230432510376 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.07282117009162903 |
| keywords[13].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1016/j.compag.2024.108716 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S116775814 |
| locations[0].source.issn | 0168-1699, 1872-7107 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0168-1699 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers and Electronics in Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers and Electronics in Agriculture |
| locations[0].landing_page_url | https://doi.org/10.1016/j.compag.2024.108716 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081300318 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4808-5205 |
| authorships[0].author.display_name | Allister Clarke |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1337719021, https://openalex.org/I153230381 |
| authorships[0].affiliations[0].raw_affiliation_string | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I1337719021 |
| authorships[0].institutions[0].ror | https://ror.org/05mmh0f86 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I2801453606, https://openalex.org/I4210132349 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Australian Research Council |
| authorships[0].institutions[1].id | https://openalex.org/I153230381 |
| authorships[0].institutions[1].ror | https://ror.org/00wfvh315 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I153230381 |
| authorships[0].institutions[1].country_code | AU |
| authorships[0].institutions[1].display_name | Charles Sturt University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. Clarke |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[1].author.id | https://openalex.org/A5085347081 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6419-6856 |
| authorships[1].author.display_name | Deborah Yates |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1337719021, https://openalex.org/I153230381 |
| authorships[1].affiliations[0].raw_affiliation_string | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I1337719021 |
| authorships[1].institutions[0].ror | https://ror.org/05mmh0f86 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I2801453606, https://openalex.org/I4210132349 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Australian Research Council |
| authorships[1].institutions[1].id | https://openalex.org/I153230381 |
| authorships[1].institutions[1].ror | https://ror.org/00wfvh315 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I153230381 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | Charles Sturt University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | D. Yates |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[2].author.id | https://openalex.org/A5019874103 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5800-4678 |
| authorships[2].author.display_name | Christopher Blanchard |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1337719021, https://openalex.org/I153230381 |
| authorships[2].affiliations[0].raw_affiliation_string | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I1337719021 |
| authorships[2].institutions[0].ror | https://ror.org/05mmh0f86 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I2801453606, https://openalex.org/I4210132349 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Australian Research Council |
| authorships[2].institutions[1].id | https://openalex.org/I153230381 |
| authorships[2].institutions[1].ror | https://ror.org/00wfvh315 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I153230381 |
| authorships[2].institutions[1].country_code | AU |
| authorships[2].institutions[1].display_name | Charles Sturt University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | C. Blanchard |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia |
| authorships[3].author.id | https://openalex.org/A5015246388 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4868-4945 |
| authorships[3].author.display_name | Md Zahidul Islam |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153230381 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I153230381 |
| authorships[3].institutions[0].ror | https://ror.org/00wfvh315 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153230381 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Charles Sturt University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | M.Z. Islam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia |
| authorships[4].author.id | https://openalex.org/A5015349901 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ralph Ford |
| authorships[4].affiliations[0].raw_affiliation_string | RLF Agro R&D Consulting, Jerilderie, NSW 2716, Australia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | R. Ford |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | RLF Agro R&D Consulting, Jerilderie, NSW 2716, Australia |
| authorships[5].author.id | https://openalex.org/A5041207254 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7717-2773 |
| authorships[5].author.display_name | Sabih ur Rehman |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I153230381 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computing and Mathematics, Charles Sturt University, Port Macquarie NSW 2444, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I153230381 |
| authorships[5].institutions[0].ror | https://ror.org/00wfvh315 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I153230381 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Charles Sturt University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | S. Rehman |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computing and Mathematics, Charles Sturt University, Port Macquarie NSW 2444, Australia |
| authorships[6].author.id | https://openalex.org/A5019128380 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3872-4114 |
| authorships[6].author.display_name | R. Walsh |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210124437 |
| authorships[6].affiliations[0].raw_affiliation_string | Ricegrowers Ltd, trading as SunRice, 57 Yanco Avenue, Leeton, NSW 2705, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I4210124437 |
| authorships[6].institutions[0].ror | https://ror.org/02vz1de40 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210124437 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | Canegrowers (Australia) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | R. Walsh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Ricegrowers Ltd, trading as SunRice, 57 Yanco Avenue, Leeton, NSW 2705, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.compag.2024.108716 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The effect of dataset construction and data pre-processing on the eXtreme Gradient Boosting algorithm applied to head rice yield prediction in Australia |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12045 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Rice Cultivation and Yield Improvement |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2885778889, https://openalex.org/W2766514146, https://openalex.org/W2885516856, https://openalex.org/W4289703016, https://openalex.org/W3094138326, https://openalex.org/W4310224730 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.compag.2024.108716 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S116775814 |
| best_oa_location.source.issn | 0168-1699, 1872-7107 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0168-1699 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers and Electronics in Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers and Electronics in Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.compag.2024.108716 |
| primary_location.id | doi:10.1016/j.compag.2024.108716 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S116775814 |
| primary_location.source.issn | 0168-1699, 1872-7107 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0168-1699 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers and Electronics in Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers and Electronics in Agriculture |
| primary_location.landing_page_url | https://doi.org/10.1016/j.compag.2024.108716 |
| publication_date | 2024-02-22 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2899081152, https://openalex.org/W2041894319, https://openalex.org/W2116627051, https://openalex.org/W1966414965, https://openalex.org/W2944794516, https://openalex.org/W2062264396, https://openalex.org/W3217216724, https://openalex.org/W2082163334, https://openalex.org/W2948570677, https://openalex.org/W2508288402, https://openalex.org/W2195671126, https://openalex.org/W6839290241, https://openalex.org/W2885573894, https://openalex.org/W2910729503, https://openalex.org/W3039861142, https://openalex.org/W2039863626, https://openalex.org/W4288942164, https://openalex.org/W2143426320, https://openalex.org/W4200383507, https://openalex.org/W2297868845, https://openalex.org/W2093275097, https://openalex.org/W2012796776, https://openalex.org/W2036123899, https://openalex.org/W2810045082, https://openalex.org/W1831050183, https://openalex.org/W2082011107, https://openalex.org/W2038466965, https://openalex.org/W2069911320, https://openalex.org/W6799398636, https://openalex.org/W4213044558, https://openalex.org/W1983700479, https://openalex.org/W2026109016, https://openalex.org/W2086280875, https://openalex.org/W1976754916, https://openalex.org/W6630145353, https://openalex.org/W2750376321, https://openalex.org/W2292773801, https://openalex.org/W3085720755, https://openalex.org/W2058731966, https://openalex.org/W2016006311, https://openalex.org/W4220823118, https://openalex.org/W6746819944, https://openalex.org/W4220677561, https://openalex.org/W2005175103, https://openalex.org/W2013414890, https://openalex.org/W3161294357, https://openalex.org/W3041629855, https://openalex.org/W3015527879, https://openalex.org/W2052593033, https://openalex.org/W6839267467, https://openalex.org/W2133160781, https://openalex.org/W6838628961, https://openalex.org/W6838575347, https://openalex.org/W3189330863, https://openalex.org/W4281489023, https://openalex.org/W4282971355, https://openalex.org/W4281632229 |
| referenced_works_count | 57 |
| abstract_inverted_index.a | 213, 231 |
| abstract_inverted_index.an | 49, 72 |
| abstract_inverted_index.at | 288 |
| abstract_inverted_index.be | 13, 179, 309 |
| abstract_inverted_index.by | 38, 77 |
| abstract_inverted_index.in | 15, 149, 216, 227, 261, 311 |
| abstract_inverted_index.is | 36, 242 |
| abstract_inverted_index.of | 7, 18, 99, 121, 133, 136, 146, 252, 271 |
| abstract_inverted_index.on | 71, 105, 115, 130 |
| abstract_inverted_index.to | 22, 47, 52, 95, 142, 162, 178, 222, 248, 267, 285, 292, 300 |
| abstract_inverted_index.HRY | 287 |
| abstract_inverted_index.The | 108, 172, 200, 258, 277 |
| abstract_inverted_index.all | 194 |
| abstract_inverted_index.and | 31, 65, 102, 152, 196, 296 |
| abstract_inverted_index.can | 12, 308 |
| abstract_inverted_index.due | 21 |
| abstract_inverted_index.for | 62, 237, 244, 256, 275, 283 |
| abstract_inverted_index.the | 4, 16, 23, 27, 29, 32, 34, 42, 58, 86, 97, 124, 144, 166, 180, 187, 207, 223, 250, 269, 281, 289, 303 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.was | 113 |
| abstract_inverted_index.way | 33 |
| abstract_inverted_index.125% | 214 |
| abstract_inverted_index.Each | 155 |
| abstract_inverted_index.HRY. | 257, 276 |
| abstract_inverted_index.Head | 54 |
| abstract_inverted_index.Rice | 55 |
| abstract_inverted_index.This | 10, 44 |
| abstract_inverted_index.When | 298 |
| abstract_inverted_index.aims | 46 |
| abstract_inverted_index.came | 205 |
| abstract_inverted_index.crop | 238 |
| abstract_inverted_index.data | 103 |
| abstract_inverted_index.each | 137 |
| abstract_inverted_index.from | 206 |
| abstract_inverted_index.made | 75 |
| abstract_inverted_index.mean | 189 |
| abstract_inverted_index.most | 80, 181, 202 |
| abstract_inverted_index.rice | 63, 82, 254, 273 |
| abstract_inverted_index.that | 235 |
| abstract_inverted_index.this | 228, 262 |
| abstract_inverted_index.used | 127 |
| abstract_inverted_index.were | 93, 140 |
| abstract_inverted_index.with | 169 |
| abstract_inverted_index.Lin's | 217 |
| abstract_inverted_index.Model | 68 |
| abstract_inverted_index.Using | 85 |
| abstract_inverted_index.Yield | 56 |
| abstract_inverted_index.based | 114, 129 |
| abstract_inverted_index.crops | 255, 274 |
| abstract_inverted_index.data, | 88, 302 |
| abstract_inverted_index.first | 109 |
| abstract_inverted_index.issue | 11 |
| abstract_inverted_index.model | 51, 106, 163, 190, 197, 204, 225, 234, 279 |
| abstract_inverted_index.other | 312 |
| abstract_inverted_index.plant | 35 |
| abstract_inverted_index.point | 291 |
| abstract_inverted_index.prior | 161 |
| abstract_inverted_index.stage | 153, 239 |
| abstract_inverted_index.study | 45, 263 |
| abstract_inverted_index.these | 39 |
| abstract_inverted_index.time. | 134 |
| abstract_inverted_index.using | 119, 165 |
| abstract_inverted_index.which | 211 |
| abstract_inverted_index.while | 123 |
| abstract_inverted_index.(HRY), | 57 |
| abstract_inverted_index.across | 193 |
| abstract_inverted_index.allows | 236 |
| abstract_inverted_index.create | 48 |
| abstract_inverted_index.during | 41 |
| abstract_inverted_index.effect | 98 |
| abstract_inverted_index.future | 253, 272 |
| abstract_inverted_index.highly | 232 |
| abstract_inverted_index.impact | 145 |
| abstract_inverted_index.levels | 148 |
| abstract_inverted_index.method | 112, 126, 139, 176 |
| abstract_inverted_index.metric | 61 |
| abstract_inverted_index.proved | 177 |
| abstract_inverted_index.scores | 192 |
| abstract_inverted_index.second | 125 |
| abstract_inverted_index.single | 201 |
| abstract_inverted_index.stages | 151 |
| abstract_inverted_index.study. | 229 |
| abstract_inverted_index.Dataset | 0 |
| abstract_inverted_index.SunRice | 87, 284 |
| abstract_inverted_index.XGBoost | 167 |
| abstract_inverted_index.between | 26 |
| abstract_inverted_index.complex | 24 |
| abstract_inverted_index.dataset | 74, 90, 100, 110, 157, 174, 183, 304 |
| abstract_inverted_index.defined | 131 |
| abstract_inverted_index.explore | 143 |
| abstract_inverted_index.feature | 159 |
| abstract_inverted_index.focused | 70 |
| abstract_inverted_index.growers | 64 |
| abstract_inverted_index.heavily | 2 |
| abstract_inverted_index.highest | 188 |
| abstract_inverted_index.impacts | 3 |
| abstract_inverted_index.improve | 249, 268 |
| abstract_inverted_index.lengths | 132 |
| abstract_inverted_index.matched | 299 |
| abstract_inverted_index.method, | 185 |
| abstract_inverted_index.methods | 92, 306 |
| abstract_inverted_index.millers | 66 |
| abstract_inverted_index.predict | 53, 286 |
| abstract_inverted_index.primary | 59 |
| abstract_inverted_index.quality | 1, 60 |
| abstract_inverted_index.regions | 314 |
| abstract_inverted_index.season. | 43 |
| abstract_inverted_index.trading | 83 |
| abstract_inverted_index.varying | 147 |
| abstract_inverted_index.yielded | 212 |
| abstract_inverted_index.SunRice, | 78 |
| abstract_inverted_index.accuracy | 191 |
| abstract_inverted_index.accurate | 182, 203, 233 |
| abstract_inverted_index.affected | 37 |
| abstract_inverted_index.climate, | 28 |
| abstract_inverted_index.company. | 84 |
| abstract_inverted_index.compared | 221 |
| abstract_inverted_index.critical | 243 |
| abstract_inverted_index.dataset, | 210 |
| abstract_inverted_index.evaluate | 96 |
| abstract_inverted_index.explored | 307 |
| abstract_inverted_index.handling | 295 |
| abstract_inverted_index.increase | 215 |
| abstract_inverted_index.insights | 247, 266 |
| abstract_inverted_index.lengths. | 154 |
| abstract_inverted_index.milling. | 297 |
| abstract_inverted_index.optimise | 293 |
| abstract_inverted_index.produced | 226 |
| abstract_inverted_index.provides | 264 |
| abstract_inverted_index.receival | 290 |
| abstract_inverted_index.training | 164, 198 |
| abstract_inverted_index.two-week | 208 |
| abstract_inverted_index.accuracy. | 107 |
| abstract_inverted_index.algorithm | 168 |
| abstract_inverted_index.available | 76 |
| abstract_inverted_index.developed | 278 |
| abstract_inverted_index.discovery | 241 |
| abstract_inverted_index.empirical | 50 |
| abstract_inverted_index.estimates | 120 |
| abstract_inverted_index.generated | 141 |
| abstract_inverted_index.globally. | 67, 315 |
| abstract_inverted_index.knowledge | 240, 259 |
| abstract_inverted_index.potential | 282 |
| abstract_inverted_index.producing | 186 |
| abstract_inverted_index.prominent | 81 |
| abstract_inverted_index.selection | 160 |
| abstract_inverted_index.underwent | 158 |
| abstract_inverted_index.Developing | 230 |
| abstract_inverted_index.Deviations | 135 |
| abstract_inverted_index.actionable | 246, 265 |
| abstract_inverted_index.conditions | 40, 118 |
| abstract_inverted_index.discovered | 260 |
| abstract_inverted_index.management | 251, 270 |
| abstract_inverted_index.modelling. | 9 |
| abstract_inverted_index.phenology, | 122 |
| abstract_inverted_index.prediction | 17 |
| abstract_inverted_index.predictive | 5 |
| abstract_inverted_index.production | 20 |
| abstract_inverted_index.replicated | 310 |
| abstract_inverted_index.time-based | 173 |
| abstract_inverted_index.uncovering | 245 |
| abstract_inverted_index.Australia's | 79 |
| abstract_inverted_index.Coefficient | 220 |
| abstract_inverted_index.Concordance | 218 |
| abstract_inverted_index.Correlation | 219 |
| abstract_inverted_index.aggregating | 116 |
| abstract_inverted_index.aggregation | 150, 209 |
| abstract_inverted_index.constructed | 156 |
| abstract_inverted_index.data-driven | 8 |
| abstract_inverted_index.development | 69 |
| abstract_inverted_index.environment | 30 |
| abstract_inverted_index.exacerbated | 14 |
| abstract_inverted_index.implemented | 94 |
| abstract_inverted_index.performance | 6 |
| abstract_inverted_index.aggregations | 128 |
| abstract_inverted_index.agricultural | 19 |
| abstract_inverted_index.construction | 91, 101, 111, 138, 175, 184, 305 |
| abstract_inverted_index.demonstrates | 280 |
| abstract_inverted_index.interactions | 25 |
| abstract_inverted_index.post-harvest | 294 |
| abstract_inverted_index.rice-growing | 313 |
| abstract_inverted_index.industry-level | 73 |
| abstract_inverted_index.meteorological | 117 |
| abstract_inverted_index.pre-processing | 104, 195 |
| abstract_inverted_index.configurations. | 199 |
| abstract_inverted_index.region-specific | 301 |
| abstract_inverted_index.worst-performing | 224 |
| abstract_inverted_index.Cross-Validation. | 171 |
| abstract_inverted_index.Leave-One-Year-Out | 170 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5081300318 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I1337719021, https://openalex.org/I153230381 |
| citation_normalized_percentile.value | 0.99217296 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |