The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1805.03305
We propose a novel deep neural network architecture for the challenging problem of single image dehazing, which aims to recover the clear image from a degraded hazy image. Instead of relying on hand-crafted image priors or explicitly estimating the components of the widely used atmospheric scattering model, our end-to-end system directly generates the clear image from an input hazy image. The proposed network has an encoder-decoder architecture with skip connections and instance normalization. We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit the representation power of deep features, and demonstrate the effectiveness of instance normalization for image dehazing. Our simple yet effective network outperforms the state-of-the-art methods by a large margin on the benchmark datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1805.03305
- https://arxiv.org/pdf/1805.03305
- OA Status
- green
- Cited By
- 17
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2799814362
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2799814362Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1805.03305Digital Object Identifier
- Title
-
The Effectiveness of Instance Normalization: a Strong Baseline for Single Image DehazingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-05-08Full publication date if available
- Authors
-
Zheng Xu, Xitong Yang, Xue Li, Xiaoshuai SunList of authors in order
- Landing page
-
https://arxiv.org/abs/1805.03305Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1805.03305Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1805.03305Direct OA link when available
- Concepts
-
Normalization (sociology), Computer science, Artificial intelligence, Benchmark (surveying), Margin (machine learning), Convolutional neural network, Encoder, Network architecture, Image (mathematics), Exploit, Deep learning, Pattern recognition (psychology), Prior probability, Computer vision, Machine learning, Bayesian probability, Computer security, Sociology, Geodesy, Geography, Anthropology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2022: 1, 2021: 5, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2799814362 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1805.03305 |
| ids.doi | https://doi.org/10.48550/arxiv.1805.03305 |
| ids.mag | 2799814362 |
| ids.openalex | https://openalex.org/W2799814362 |
| fwci | |
| type | preprint |
| title | The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136886441 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8472923040390015 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[0].display_name | Normalization (sociology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7842040061950684 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7174984812736511 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6434130668640137 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C774472 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5985094904899597 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[4].display_name | Margin (machine learning) |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5908758044242859 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C118505674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.54443359375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[6].display_name | Encoder |
| concepts[7].id | https://openalex.org/C193415008 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5265489220619202 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[7].display_name | Network architecture |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5105763673782349 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C165696696 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5046128034591675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[9].display_name | Exploit |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.464733362197876 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46317464113235474 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C177769412 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4485885500907898 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[12].display_name | Prior probability |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4009994864463806 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.20593580603599548 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C107673813 |
| concepts[15].level | 2 |
| concepts[15].score | 0.058459341526031494 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[15].display_name | Bayesian probability |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C19165224 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[20].display_name | Anthropology |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/normalization |
| keywords[0].score | 0.8472923040390015 |
| keywords[0].display_name | Normalization (sociology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7842040061950684 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7174984812736511 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.6434130668640137 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/margin |
| keywords[4].score | 0.5985094904899597 |
| keywords[4].display_name | Margin (machine learning) |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5908758044242859 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/encoder |
| keywords[6].score | 0.54443359375 |
| keywords[6].display_name | Encoder |
| keywords[7].id | https://openalex.org/keywords/network-architecture |
| keywords[7].score | 0.5265489220619202 |
| keywords[7].display_name | Network architecture |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.5105763673782349 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/exploit |
| keywords[9].score | 0.5046128034591675 |
| keywords[9].display_name | Exploit |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.464733362197876 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.46317464113235474 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/prior-probability |
| keywords[12].score | 0.4485885500907898 |
| keywords[12].display_name | Prior probability |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.4009994864463806 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.20593580603599548 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/bayesian-probability |
| keywords[15].score | 0.058459341526031494 |
| keywords[15].display_name | Bayesian probability |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1805.03305 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1805.03305 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1805.03305 |
| locations[1].id | doi:10.48550/arxiv.1805.03305 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1805.03305 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101651955 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-6747-3953 |
| authorships[0].author.display_name | Zheng Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng Xu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091064356 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4372-241X |
| authorships[1].author.display_name | Xitong Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xitong Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100372201 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4515-6792 |
| authorships[2].author.display_name | Xue Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xue Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059926864 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3912-9306 |
| authorships[3].author.display_name | Xiaoshuai Sun |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiaoshuai Sun |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1805.03305 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2018-05-17T00:00:00 |
| display_name | The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| related_works | https://openalex.org/W2580650124, https://openalex.org/W4386190339, https://openalex.org/W2968424575, https://openalex.org/W3142333283, https://openalex.org/W3122088529, https://openalex.org/W3041320102, https://openalex.org/W2111669074, https://openalex.org/W2085259108, https://openalex.org/W3123087812, https://openalex.org/W2063076820 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1805.03305 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1805.03305 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1805.03305 |
| primary_location.id | pmh:oai:arXiv.org:1805.03305 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1805.03305 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1805.03305 |
| publication_date | 2018-05-08 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2065002911, https://openalex.org/W2793308355, https://openalex.org/W2963525668, https://openalex.org/W2991006905, https://openalex.org/W2028990532, https://openalex.org/W2962782447, https://openalex.org/W2114867966, https://openalex.org/W63091017, https://openalex.org/W2117539524, https://openalex.org/W2475287302, https://openalex.org/W2748021867, https://openalex.org/W2156936307, https://openalex.org/W2121880036, https://openalex.org/W2536722097, https://openalex.org/W2779176852, https://openalex.org/W2951004968, https://openalex.org/W2788682721, https://openalex.org/W2798031977, https://openalex.org/W1901129140, https://openalex.org/W2155541015, https://openalex.org/W2771305881, https://openalex.org/W2518979500, https://openalex.org/W2949117887, https://openalex.org/W2791550762, https://openalex.org/W125693051, https://openalex.org/W2502312327, https://openalex.org/W2796555273, https://openalex.org/W2128254161, https://openalex.org/W2783879794, https://openalex.org/W2028763589, https://openalex.org/W2467473805, https://openalex.org/W1686810756, https://openalex.org/W2951697117, https://openalex.org/W2797809360, https://openalex.org/W2194775991 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 2, 24, 113 |
| abstract_inverted_index.We | 0, 73 |
| abstract_inverted_index.an | 56, 64 |
| abstract_inverted_index.as | 83 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.of | 12, 29, 40, 78, 90, 97 |
| abstract_inverted_index.on | 31, 116 |
| abstract_inverted_index.or | 35 |
| abstract_inverted_index.to | 18, 85 |
| abstract_inverted_index.Our | 103 |
| abstract_inverted_index.The | 60 |
| abstract_inverted_index.VGG | 81 |
| abstract_inverted_index.and | 70, 93 |
| abstract_inverted_index.for | 8, 100 |
| abstract_inverted_index.has | 63 |
| abstract_inverted_index.our | 47 |
| abstract_inverted_index.the | 9, 20, 38, 41, 52, 75, 79, 87, 95, 109, 117 |
| abstract_inverted_index.yet | 105 |
| abstract_inverted_index.aims | 17 |
| abstract_inverted_index.deep | 4, 91 |
| abstract_inverted_index.from | 23, 55 |
| abstract_inverted_index.hazy | 26, 58 |
| abstract_inverted_index.skip | 68 |
| abstract_inverted_index.used | 43 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.adopt | 74 |
| abstract_inverted_index.clear | 21, 53 |
| abstract_inverted_index.image | 14, 22, 33, 54, 101 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.large | 114 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.power | 89 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.image. | 27, 59 |
| abstract_inverted_index.layers | 77 |
| abstract_inverted_index.margin | 115 |
| abstract_inverted_index.model, | 46 |
| abstract_inverted_index.neural | 5 |
| abstract_inverted_index.priors | 34 |
| abstract_inverted_index.simple | 104 |
| abstract_inverted_index.single | 13 |
| abstract_inverted_index.system | 49 |
| abstract_inverted_index.widely | 42 |
| abstract_inverted_index.Instead | 28 |
| abstract_inverted_index.encoder | 84 |
| abstract_inverted_index.exploit | 86 |
| abstract_inverted_index.methods | 111 |
| abstract_inverted_index.network | 6, 62, 82, 107 |
| abstract_inverted_index.problem | 11 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.recover | 19 |
| abstract_inverted_index.relying | 30 |
| abstract_inverted_index.degraded | 25 |
| abstract_inverted_index.directly | 50 |
| abstract_inverted_index.instance | 71, 98 |
| abstract_inverted_index.proposed | 61 |
| abstract_inverted_index.benchmark | 118 |
| abstract_inverted_index.datasets. | 119 |
| abstract_inverted_index.dehazing, | 15 |
| abstract_inverted_index.dehazing. | 102 |
| abstract_inverted_index.effective | 106 |
| abstract_inverted_index.features, | 92 |
| abstract_inverted_index.generates | 51 |
| abstract_inverted_index.components | 39 |
| abstract_inverted_index.end-to-end | 48 |
| abstract_inverted_index.estimating | 37 |
| abstract_inverted_index.explicitly | 36 |
| abstract_inverted_index.scattering | 45 |
| abstract_inverted_index.atmospheric | 44 |
| abstract_inverted_index.challenging | 10 |
| abstract_inverted_index.connections | 69 |
| abstract_inverted_index.demonstrate | 94 |
| abstract_inverted_index.outperforms | 108 |
| abstract_inverted_index.pre-trained | 80 |
| abstract_inverted_index.architecture | 7, 66 |
| abstract_inverted_index.hand-crafted | 32 |
| abstract_inverted_index.convolutional | 76 |
| abstract_inverted_index.effectiveness | 96 |
| abstract_inverted_index.normalization | 99 |
| abstract_inverted_index.normalization. | 72 |
| abstract_inverted_index.representation | 88 |
| abstract_inverted_index.encoder-decoder | 65 |
| abstract_inverted_index.state-of-the-art | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |