The Effects of Super-Resolution on Object Detection Performance in\n Satellite Imagery Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1812.04098
We explore the application of super-resolution techniques to satellite\nimagery, and the effects of these techniques on object detection algorithm\nperformance. Specifically, we enhance satellite imagery beyond its native\nresolution, and test if we can identify various types of vehicles, planes, and\nboats with greater accuracy than native resolution. Using the Very Deep\nSuper-Resolution (VDSR) framework and a custom Random Forest Super-Resolution\n(RFSR) framework we generate enhancement levels of 2x, 4x, and 8x over five\ndistinct resolutions ranging from 30 cm to 4.8 meters. Using both native and\nsuper-resolved data, we then train several custom detection models using the\nSIMRDWN object detection framework. SIMRDWN combines a number of popular object\ndetection algorithms (e.g. SSD, YOLO) into a unified framework that is designed\nto rapidly detect objects in large satellite images. This approach allows us to\nquantify the effects of super-resolution techniques on object detection\nperformance across multiple classes and resolutions. We also quantify the\nperformance of object detection as a function of native resolution and object\npixel size. For our test set we note that performance degrades from mean\naverage precision (mAP) = 0.53 at 30 cm resolution, down to mAP = 0.11 at 4.8 m\nresolution. Super-resolving native 30 cm imagery to 15 cm yields the greatest\nbenefit; a 13-36% improvement in mAP. Super-resolution is less beneficial at\ncoarser resolutions, though still provides a small improvement in performance.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/1812.04098
- https://arxiv.org/pdf/1812.04098
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4289125397
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4289125397Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1812.04098Digital Object Identifier
- Title
-
The Effects of Super-Resolution on Object Detection Performance in\n Satellite ImageryWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2018Year of publication
- Publication date
-
2018-12-10Full publication date if available
- Authors
-
Jacob Shermeyer, A. Van EttenList of authors in order
- Landing page
-
https://arxiv.org/abs/1812.04098Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1812.04098Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1812.04098Direct OA link when available
- Concepts
-
Computer science, Object detection, Satellite, Remote sensing, Image resolution, Artificial intelligence, Pixel, Resolution (logic), Object (grammar), Satellite imagery, Computer vision, Ranging, Set (abstract data type), Pattern recognition (psychology), Geography, Physics, Astronomy, Telecommunications, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4289125397 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1812.04098 |
| ids.openalex | https://openalex.org/W4289125397 |
| fwci | 0.0 |
| type | preprint |
| title | The Effects of Super-Resolution on Object Detection Performance in\n Satellite Imagery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T12153 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9868000149726868 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3105 |
| topics[1].subfield.display_name | Instrumentation |
| topics[1].display_name | Advanced Optical Sensing Technologies |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.977400004863739 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6762492060661316 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776151529 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6206287741661072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[1].display_name | Object detection |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6132270693778992 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6089799404144287 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C205372480 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5937155485153198 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[4].display_name | Image resolution |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5889777541160583 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5696160793304443 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C138268822 |
| concepts[7].level | 2 |
| concepts[7].score | 0.556152880191803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[7].display_name | Resolution (logic) |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5555795431137085 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C2778102629 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5011305809020996 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[9].display_name | Satellite imagery |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.49324434995651245 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C115051666 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4872366487979889 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[11].display_name | Ranging |
| concepts[12].id | https://openalex.org/C177264268 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4646297097206116 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[12].display_name | Set (abstract data type) |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3352341651916504 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.230300635099411 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08445766568183899 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C1276947 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[16].display_name | Astronomy |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6762492060661316 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/object-detection |
| keywords[1].score | 0.6206287741661072 |
| keywords[1].display_name | Object detection |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.6132270693778992 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.6089799404144287 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/image-resolution |
| keywords[4].score | 0.5937155485153198 |
| keywords[4].display_name | Image resolution |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5889777541160583 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.5696160793304443 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/resolution |
| keywords[7].score | 0.556152880191803 |
| keywords[7].display_name | Resolution (logic) |
| keywords[8].id | https://openalex.org/keywords/object |
| keywords[8].score | 0.5555795431137085 |
| keywords[8].display_name | Object (grammar) |
| keywords[9].id | https://openalex.org/keywords/satellite-imagery |
| keywords[9].score | 0.5011305809020996 |
| keywords[9].display_name | Satellite imagery |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.49324434995651245 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/ranging |
| keywords[11].score | 0.4872366487979889 |
| keywords[11].display_name | Ranging |
| keywords[12].id | https://openalex.org/keywords/set |
| keywords[12].score | 0.4646297097206116 |
| keywords[12].display_name | Set (abstract data type) |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3352341651916504 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.230300635099411 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.08445766568183899 |
| keywords[15].display_name | Physics |
| language | |
| locations[0].id | pmh:oai:arXiv.org:1812.04098 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1812.04098 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1812.04098 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5055936854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8143-2790 |
| authorships[0].author.display_name | Jacob Shermeyer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shermeyer, Jacob |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091033897 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A. Van Etten |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Van Etten, Adam |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1812.04098 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-08-01T00:00:00 |
| display_name | The Effects of Super-Resolution on Object Detection Performance in\n Satellite Imagery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2783354812, https://openalex.org/W4312958259, https://openalex.org/W2103009189, https://openalex.org/W4390813131, https://openalex.org/W2349383066, https://openalex.org/W2614621130, https://openalex.org/W4289655544, https://openalex.org/W2044092692, https://openalex.org/W2547665164, https://openalex.org/W3103111272 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1812.04098 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1812.04098 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1812.04098 |
| primary_location.id | pmh:oai:arXiv.org:1812.04098 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1812.04098 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1812.04098 |
| publication_date | 2018-12-10 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 166, 175 |
| abstract_inverted_index.a | 52, 96, 106, 145, 191, 205 |
| abstract_inverted_index.15 | 186 |
| abstract_inverted_index.30 | 72, 169, 182 |
| abstract_inverted_index.8x | 66 |
| abstract_inverted_index.We | 0, 137 |
| abstract_inverted_index.as | 144 |
| abstract_inverted_index.at | 168, 177 |
| abstract_inverted_index.cm | 73, 170, 183, 187 |
| abstract_inverted_index.if | 29 |
| abstract_inverted_index.in | 115, 194, 208 |
| abstract_inverted_index.is | 110, 197 |
| abstract_inverted_index.of | 4, 12, 35, 62, 98, 126, 141, 147 |
| abstract_inverted_index.on | 15, 129 |
| abstract_inverted_index.to | 7, 74, 173, 185 |
| abstract_inverted_index.us | 122 |
| abstract_inverted_index.we | 20, 30, 58, 82, 157 |
| abstract_inverted_index.2x, | 63 |
| abstract_inverted_index.4.8 | 75, 178 |
| abstract_inverted_index.4x, | 64 |
| abstract_inverted_index.For | 153 |
| abstract_inverted_index.and | 9, 27, 51, 65, 135, 150 |
| abstract_inverted_index.can | 31 |
| abstract_inverted_index.its | 25 |
| abstract_inverted_index.mAP | 174 |
| abstract_inverted_index.our | 154 |
| abstract_inverted_index.set | 156 |
| abstract_inverted_index.the | 2, 10, 46, 124, 189 |
| abstract_inverted_index.0.11 | 176 |
| abstract_inverted_index.0.53 | 167 |
| abstract_inverted_index.SSD, | 103 |
| abstract_inverted_index.This | 119 |
| abstract_inverted_index.Very | 47 |
| abstract_inverted_index.also | 138 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.down | 172 |
| abstract_inverted_index.from | 71, 162 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.less | 198 |
| abstract_inverted_index.mAP. | 195 |
| abstract_inverted_index.note | 158 |
| abstract_inverted_index.over | 67 |
| abstract_inverted_index.test | 28, 155 |
| abstract_inverted_index.than | 42 |
| abstract_inverted_index.that | 109, 159 |
| abstract_inverted_index.then | 83 |
| abstract_inverted_index.with | 39 |
| abstract_inverted_index.(e.g. | 102 |
| abstract_inverted_index.(mAP) | 165 |
| abstract_inverted_index.Using | 45, 77 |
| abstract_inverted_index.YOLO) | 104 |
| abstract_inverted_index.data, | 81 |
| abstract_inverted_index.large | 116 |
| abstract_inverted_index.size. | 152 |
| abstract_inverted_index.small | 206 |
| abstract_inverted_index.still | 203 |
| abstract_inverted_index.these | 13 |
| abstract_inverted_index.train | 84 |
| abstract_inverted_index.types | 34 |
| abstract_inverted_index.using | 89 |
| abstract_inverted_index.(VDSR) | 49 |
| abstract_inverted_index.13-36% | 192 |
| abstract_inverted_index.Forest | 55 |
| abstract_inverted_index.Random | 54 |
| abstract_inverted_index.across | 132 |
| abstract_inverted_index.allows | 121 |
| abstract_inverted_index.beyond | 24 |
| abstract_inverted_index.custom | 53, 86 |
| abstract_inverted_index.detect | 113 |
| abstract_inverted_index.levels | 61 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.native | 43, 79, 148, 181 |
| abstract_inverted_index.number | 97 |
| abstract_inverted_index.object | 16, 91, 130, 142 |
| abstract_inverted_index.though | 202 |
| abstract_inverted_index.yields | 188 |
| abstract_inverted_index.SIMRDWN | 94 |
| abstract_inverted_index.classes | 134 |
| abstract_inverted_index.effects | 11, 125 |
| abstract_inverted_index.enhance | 21 |
| abstract_inverted_index.explore | 1 |
| abstract_inverted_index.greater | 40 |
| abstract_inverted_index.imagery | 23, 184 |
| abstract_inverted_index.images. | 118 |
| abstract_inverted_index.meters. | 76 |
| abstract_inverted_index.objects | 114 |
| abstract_inverted_index.planes, | 37 |
| abstract_inverted_index.popular | 99 |
| abstract_inverted_index.ranging | 70 |
| abstract_inverted_index.rapidly | 112 |
| abstract_inverted_index.several | 85 |
| abstract_inverted_index.unified | 107 |
| abstract_inverted_index.various | 33 |
| abstract_inverted_index.accuracy | 41 |
| abstract_inverted_index.approach | 120 |
| abstract_inverted_index.combines | 95 |
| abstract_inverted_index.degrades | 161 |
| abstract_inverted_index.function | 146 |
| abstract_inverted_index.generate | 59 |
| abstract_inverted_index.identify | 32 |
| abstract_inverted_index.multiple | 133 |
| abstract_inverted_index.provides | 204 |
| abstract_inverted_index.quantify | 139 |
| abstract_inverted_index.detection | 17, 87, 92, 143 |
| abstract_inverted_index.framework | 50, 57, 108 |
| abstract_inverted_index.precision | 164 |
| abstract_inverted_index.satellite | 22, 117 |
| abstract_inverted_index.vehicles, | 36 |
| abstract_inverted_index.algorithms | 101 |
| abstract_inverted_index.and\nboats | 38 |
| abstract_inverted_index.beneficial | 199 |
| abstract_inverted_index.framework. | 93 |
| abstract_inverted_index.resolution | 149 |
| abstract_inverted_index.techniques | 6, 14, 128 |
| abstract_inverted_index.application | 3 |
| abstract_inverted_index.at\ncoarser | 200 |
| abstract_inverted_index.enhancement | 60 |
| abstract_inverted_index.improvement | 193, 207 |
| abstract_inverted_index.performance | 160 |
| abstract_inverted_index.resolution, | 171 |
| abstract_inverted_index.resolution. | 44 |
| abstract_inverted_index.resolutions | 69 |
| abstract_inverted_index.designed\nto | 111 |
| abstract_inverted_index.resolutions, | 201 |
| abstract_inverted_index.resolutions. | 136 |
| abstract_inverted_index.the\nSIMRDWN | 90 |
| abstract_inverted_index.to\nquantify | 123 |
| abstract_inverted_index.Specifically, | 19 |
| abstract_inverted_index.mean\naverage | 163 |
| abstract_inverted_index.object\npixel | 151 |
| abstract_inverted_index.five\ndistinct | 68 |
| abstract_inverted_index.m\nresolution. | 179 |
| abstract_inverted_index.performance.\n | 209 |
| abstract_inverted_index.Super-resolving | 180 |
| abstract_inverted_index.Super-resolution | 196 |
| abstract_inverted_index.super-resolution | 5, 127 |
| abstract_inverted_index.the\nperformance | 140 |
| abstract_inverted_index.object\ndetection | 100 |
| abstract_inverted_index.greatest\nbenefit; | 190 |
| abstract_inverted_index.and\nsuper-resolved | 80 |
| abstract_inverted_index.native\nresolution, | 26 |
| abstract_inverted_index.satellite\nimagery, | 8 |
| abstract_inverted_index.Deep\nSuper-Resolution | 48 |
| abstract_inverted_index.detection\nperformance | 131 |
| abstract_inverted_index.algorithm\nperformance. | 18 |
| abstract_inverted_index.Super-Resolution\n(RFSR) | 56 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.29796453 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |