The Efficacy and Utility of Lower-Dimensional Riemannian Geometry for EEG-Based Emotion Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app13148274
Electroencephalography (EEG) signals have diverse applications in brain-computer interfaces (BCIs), neurological condition diagnoses, and emotion recognition across healthcare, education, and entertainment domains. This paper presents a robust method that leverages Riemannian geometry to enhance the accuracy of EEG-based emotion classification. The proposed approach involves adaptive feature extraction using principal component analysis (PCA) in the Euclidean space to capture relevant signal characteristics and improve classification performance. Covariance matrices are derived from the extracted features and projected onto the Riemannian manifold. Emotion classification is performed using the minimum distance to Riemannian mean (MDRM) classifier. The effectiveness of the method was evaluated through experiments on four datasets, DEAP, DREAMER, MAHNOB, and SEED, demonstrating its generalizability and consistent accuracy improvement across different scenarios. The classification accuracy and robustness were compared with several state-of-the-art classification methods, which supports the validity and efficacy of using Riemannian geometry for enhancing the accuracy of EEG-based emotion classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app13148274
- https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575
- OA Status
- gold
- Cited By
- 4
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384666052
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384666052Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app13148274Digital Object Identifier
- Title
-
The Efficacy and Utility of Lower-Dimensional Riemannian Geometry for EEG-Based Emotion ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-17Full publication date if available
- Authors
-
Zubaidah Al-Mashhadani, Nasrin Bayat, Ibrahim F. Kadhim, Renoa Choudhury, Joon‐Hyuk ParkList of authors in order
- Landing page
-
https://doi.org/10.3390/app13148274Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575Direct OA link when available
- Concepts
-
Generalizability theory, Riemannian geometry, Electroencephalography, Artificial intelligence, Pattern recognition (psychology), Computer science, Robustness (evolution), Emotion classification, Classifier (UML), Principal component analysis, Feature extraction, Mathematics, Psychology, Statistics, Geometry, Biochemistry, Psychiatry, Gene, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384666052 |
|---|---|
| doi | https://doi.org/10.3390/app13148274 |
| ids.doi | https://doi.org/10.3390/app13148274 |
| ids.openalex | https://openalex.org/W4384666052 |
| fwci | 1.05509101 |
| type | article |
| title | The Efficacy and Utility of Lower-Dimensional Riemannian Geometry for EEG-Based Emotion Classification |
| biblio.issue | 14 |
| biblio.volume | 13 |
| biblio.last_page | 8274 |
| biblio.first_page | 8274 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C27158222 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6461659073829651 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[0].display_name | Generalizability theory |
| concepts[1].id | https://openalex.org/C181104567 |
| concepts[1].level | 2 |
| concepts[1].score | 0.619209349155426 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q761383 |
| concepts[1].display_name | Riemannian geometry |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5828754901885986 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5803545713424683 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.535952627658844 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5342411398887634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5259892344474792 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C206310091 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44776612520217896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q750859 |
| concepts[7].display_name | Emotion classification |
| concepts[8].id | https://openalex.org/C95623464 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43866050243377686 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[8].display_name | Classifier (UML) |
| concepts[9].id | https://openalex.org/C27438332 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43089020252227783 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[9].display_name | Principal component analysis |
| concepts[10].id | https://openalex.org/C52622490 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4185335040092468 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[10].display_name | Feature extraction |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3602929711341858 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2878231406211853 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1487252116203308 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10480883717536926 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C118552586 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[16].display_name | Psychiatry |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/generalizability-theory |
| keywords[0].score | 0.6461659073829651 |
| keywords[0].display_name | Generalizability theory |
| keywords[1].id | https://openalex.org/keywords/riemannian-geometry |
| keywords[1].score | 0.619209349155426 |
| keywords[1].display_name | Riemannian geometry |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.5828754901885986 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5803545713424683 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.535952627658844 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5342411398887634 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.5259892344474792 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/emotion-classification |
| keywords[7].score | 0.44776612520217896 |
| keywords[7].display_name | Emotion classification |
| keywords[8].id | https://openalex.org/keywords/classifier |
| keywords[8].score | 0.43866050243377686 |
| keywords[8].display_name | Classifier (UML) |
| keywords[9].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[9].score | 0.43089020252227783 |
| keywords[9].display_name | Principal component analysis |
| keywords[10].id | https://openalex.org/keywords/feature-extraction |
| keywords[10].score | 0.4185335040092468 |
| keywords[10].display_name | Feature extraction |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3602929711341858 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.2878231406211853 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.1487252116203308 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.10480883717536926 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.3390/app13148274 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app13148274 |
| locations[1].id | pmh:oai:doaj.org/article:a49cbaa6f1a345cb87dadf51f9ecf5ff |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 14, p 8274 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/a49cbaa6f1a345cb87dadf51f9ecf5ff |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/13/14/8274/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 13; Issue 14; Pages: 8274 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app13148274 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036864409 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-3924-0958 |
| authorships[0].author.display_name | Zubaidah Al-Mashhadani |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I106165777 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[0].institutions[0].id | https://openalex.org/I106165777 |
| authorships[0].institutions[0].ror | https://ror.org/036nfer12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I106165777 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Central Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zubaidah Al-Mashhadani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[1].author.id | https://openalex.org/A5001730083 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4184-2920 |
| authorships[1].author.display_name | Nasrin Bayat |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I106165777 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[1].institutions[0].id | https://openalex.org/I106165777 |
| authorships[1].institutions[0].ror | https://ror.org/036nfer12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I106165777 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Central Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nasrin Bayat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[2].author.id | https://openalex.org/A5046358744 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-3320-990X |
| authorships[2].author.display_name | Ibrahim F. Kadhim |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I106165777 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[2].institutions[0].id | https://openalex.org/I106165777 |
| authorships[2].institutions[0].ror | https://ror.org/036nfer12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I106165777 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Central Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ibrahim F. Kadhim |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[3].author.id | https://openalex.org/A5039241858 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6301-3197 |
| authorships[3].author.display_name | Renoa Choudhury |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I106165777 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[3].institutions[0].id | https://openalex.org/I106165777 |
| authorships[3].institutions[0].ror | https://ror.org/036nfer12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I106165777 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Central Florida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Renoa Choudhury |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[4].author.id | https://openalex.org/A5056470088 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9038-4981 |
| authorships[4].author.display_name | Joon‐Hyuk Park |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I106165777 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| authorships[4].institutions[0].id | https://openalex.org/I106165777 |
| authorships[4].institutions[0].ror | https://ror.org/036nfer12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I106165777 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Central Florida |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Joon-Hyuk Park |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-20T00:00:00 |
| display_name | The Efficacy and Utility of Lower-Dimensional Riemannian Geometry for EEG-Based Emotion Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2118717649, https://openalex.org/W410723623, https://openalex.org/W2413243053, https://openalex.org/W2015341305, https://openalex.org/W4225593417, https://openalex.org/W2035068594, https://openalex.org/W2573498121, https://openalex.org/W3022298670, https://openalex.org/W3160494304, https://openalex.org/W1549477351 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app13148274 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app13148274 |
| primary_location.id | doi:10.3390/app13148274 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/14/8274/pdf?version=1689597575 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app13148274 |
| publication_date | 2023-07-17 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2002055708, https://openalex.org/W3203998598, https://openalex.org/W1947251450, https://openalex.org/W4229024336, https://openalex.org/W2001362807, https://openalex.org/W2917145198, https://openalex.org/W4210252670, https://openalex.org/W2793682827, https://openalex.org/W3043396847, https://openalex.org/W2096597330, https://openalex.org/W2233001524, https://openalex.org/W2800908245, https://openalex.org/W1577432691, https://openalex.org/W2962999323, https://openalex.org/W2008796857, https://openalex.org/W3036460714, https://openalex.org/W2962772276, https://openalex.org/W1986964250, https://openalex.org/W4306655032, https://openalex.org/W4302045803, https://openalex.org/W2122098299, https://openalex.org/W2599124244, https://openalex.org/W2964593864, https://openalex.org/W2145088392, https://openalex.org/W4379115762, https://openalex.org/W2999568148, https://openalex.org/W3011735119, https://openalex.org/W2165611870, https://openalex.org/W2789438342, https://openalex.org/W2594911616, https://openalex.org/W2774146830, https://openalex.org/W2786830879, https://openalex.org/W4323312548, https://openalex.org/W4382940880, https://openalex.org/W4378086677, https://openalex.org/W1519562906, https://openalex.org/W2240594272, https://openalex.org/W4379615104, https://openalex.org/W2137842291, https://openalex.org/W3012897833, https://openalex.org/W2125949583, https://openalex.org/W1526187207, https://openalex.org/W2127182301, https://openalex.org/W1697184117, https://openalex.org/W6696405891, https://openalex.org/W2273003144, https://openalex.org/W2291663305 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 25 |
| abstract_inverted_index.in | 6, 52 |
| abstract_inverted_index.is | 81 |
| abstract_inverted_index.of | 36, 94, 137, 145 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.to | 32, 56, 87 |
| abstract_inverted_index.The | 40, 92, 119 |
| abstract_inverted_index.and | 13, 19, 61, 73, 107, 112, 122, 135 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 141 |
| abstract_inverted_index.its | 110 |
| abstract_inverted_index.the | 34, 53, 70, 76, 84, 95, 133, 143 |
| abstract_inverted_index.was | 97 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.four | 102 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.mean | 89 |
| abstract_inverted_index.onto | 75 |
| abstract_inverted_index.that | 28 |
| abstract_inverted_index.were | 124 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.(EEG) | 1 |
| abstract_inverted_index.(PCA) | 51 |
| abstract_inverted_index.DEAP, | 104 |
| abstract_inverted_index.SEED, | 108 |
| abstract_inverted_index.paper | 23 |
| abstract_inverted_index.space | 55 |
| abstract_inverted_index.using | 47, 83, 138 |
| abstract_inverted_index.which | 131 |
| abstract_inverted_index.(MDRM) | 90 |
| abstract_inverted_index.across | 16, 116 |
| abstract_inverted_index.method | 27, 96 |
| abstract_inverted_index.robust | 26 |
| abstract_inverted_index.signal | 59 |
| abstract_inverted_index.(BCIs), | 9 |
| abstract_inverted_index.Emotion | 79 |
| abstract_inverted_index.MAHNOB, | 106 |
| abstract_inverted_index.capture | 57 |
| abstract_inverted_index.derived | 68 |
| abstract_inverted_index.diverse | 4 |
| abstract_inverted_index.emotion | 14, 38, 147 |
| abstract_inverted_index.enhance | 33 |
| abstract_inverted_index.feature | 45 |
| abstract_inverted_index.improve | 62 |
| abstract_inverted_index.minimum | 85 |
| abstract_inverted_index.several | 127 |
| abstract_inverted_index.signals | 2 |
| abstract_inverted_index.through | 99 |
| abstract_inverted_index.DREAMER, | 105 |
| abstract_inverted_index.accuracy | 35, 114, 121, 144 |
| abstract_inverted_index.adaptive | 44 |
| abstract_inverted_index.analysis | 50 |
| abstract_inverted_index.approach | 42 |
| abstract_inverted_index.compared | 125 |
| abstract_inverted_index.distance | 86 |
| abstract_inverted_index.domains. | 21 |
| abstract_inverted_index.efficacy | 136 |
| abstract_inverted_index.features | 72 |
| abstract_inverted_index.geometry | 31, 140 |
| abstract_inverted_index.involves | 43 |
| abstract_inverted_index.matrices | 66 |
| abstract_inverted_index.methods, | 130 |
| abstract_inverted_index.presents | 24 |
| abstract_inverted_index.proposed | 41 |
| abstract_inverted_index.relevant | 58 |
| abstract_inverted_index.supports | 132 |
| abstract_inverted_index.validity | 134 |
| abstract_inverted_index.EEG-based | 37, 146 |
| abstract_inverted_index.Euclidean | 54 |
| abstract_inverted_index.component | 49 |
| abstract_inverted_index.condition | 11 |
| abstract_inverted_index.datasets, | 103 |
| abstract_inverted_index.different | 117 |
| abstract_inverted_index.enhancing | 142 |
| abstract_inverted_index.evaluated | 98 |
| abstract_inverted_index.extracted | 71 |
| abstract_inverted_index.leverages | 29 |
| abstract_inverted_index.manifold. | 78 |
| abstract_inverted_index.performed | 82 |
| abstract_inverted_index.principal | 48 |
| abstract_inverted_index.projected | 74 |
| abstract_inverted_index.Covariance | 65 |
| abstract_inverted_index.Riemannian | 30, 77, 88, 139 |
| abstract_inverted_index.consistent | 113 |
| abstract_inverted_index.diagnoses, | 12 |
| abstract_inverted_index.education, | 18 |
| abstract_inverted_index.extraction | 46 |
| abstract_inverted_index.interfaces | 8 |
| abstract_inverted_index.robustness | 123 |
| abstract_inverted_index.scenarios. | 118 |
| abstract_inverted_index.classifier. | 91 |
| abstract_inverted_index.experiments | 100 |
| abstract_inverted_index.healthcare, | 17 |
| abstract_inverted_index.improvement | 115 |
| abstract_inverted_index.recognition | 15 |
| abstract_inverted_index.applications | 5 |
| abstract_inverted_index.neurological | 10 |
| abstract_inverted_index.performance. | 64 |
| abstract_inverted_index.demonstrating | 109 |
| abstract_inverted_index.effectiveness | 93 |
| abstract_inverted_index.entertainment | 20 |
| abstract_inverted_index.brain-computer | 7 |
| abstract_inverted_index.classification | 63, 80, 120, 129 |
| abstract_inverted_index.characteristics | 60 |
| abstract_inverted_index.classification. | 39, 148 |
| abstract_inverted_index.generalizability | 111 |
| abstract_inverted_index.state-of-the-art | 128 |
| abstract_inverted_index.Electroencephalography | 0 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5056470088 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I106165777 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.71718363 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |