The Ensemble Consistency Test: From CESM to MPAS and Beyond Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/gmd-2024-115
The Ensemble Consistency Test (ECT) and its Ultra-Fast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). By characterizing the distribution of an accepted ensemble of perturbed ultra-fast model runs, the UF-ECT is able to identify changes exceeding internal variability in expensive chaotic numerical models with reasonable computational costs. However, up until now this approach has not seen adoption by other communities, in part because the process of adopting the UF-ECT procedure to other models was not clear. In this work we develop a generalized setup framework for applying the UF-ECT to different models and show how our specification of UF-ECT parameters allow us to balance important goals like test sensitivity and computational cost. Finally, we walk through the setup framework in detail and demonstrate the performance of the UF-ECT with our new determined parameters for the Model Across Prediction Scales-Atmosphere (MPAS-A) model, the substantially updated CESM atmospheric model, and realistic development scenarios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/gmd-2024-115
- OA Status
- gold
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400594571
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400594571Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/gmd-2024-115Digital Object Identifier
- Title
-
The Ensemble Consistency Test: From CESM to MPAS and BeyondWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-12Full publication date if available
- Authors
-
Teo Price-Broncucia, Allison H. Baker, Dorit Hammerling, Michael Duda, Rebecca MorrisonList of authors in order
- Landing page
-
https://doi.org/10.5194/gmd-2024-115Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/gmd-2024-115Direct OA link when available
- Concepts
-
Consistency (knowledge bases), Computer science, Process (computing), Identification (biology), Sensitivity (control systems), Ensemble forecasting, Internal consistency, Data mining, Machine learning, Artificial intelligence, Engineering, Mathematics, Statistics, Psychometrics, Operating system, Biology, Electronic engineering, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400594571 |
|---|---|
| doi | https://doi.org/10.5194/gmd-2024-115 |
| ids.doi | https://doi.org/10.5194/gmd-2024-115 |
| ids.openalex | https://openalex.org/W4400594571 |
| fwci | 0.0 |
| type | preprint |
| title | The Ensemble Consistency Test: From CESM to MPAS and Beyond |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T11588 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9961000084877014 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Atmospheric and Environmental Gas Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776436953 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7361176609992981 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[0].display_name | Consistency (knowledge bases) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5815321207046509 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5537669062614441 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C116834253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5056402683258057 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[3].display_name | Identification (biology) |
| concepts[4].id | https://openalex.org/C21200559 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5052993893623352 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[4].display_name | Sensitivity (control systems) |
| concepts[5].id | https://openalex.org/C119898033 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45536157488822937 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[5].display_name | Ensemble forecasting |
| concepts[6].id | https://openalex.org/C3018868096 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42701470851898193 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2693233 |
| concepts[6].display_name | Internal consistency |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3309594392776489 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2338816225528717 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21442556381225586 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.19415870308876038 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1731889247894287 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.088908851146698 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C171606756 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q506132 |
| concepts[13].display_name | Psychometrics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C24326235 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[16].display_name | Electronic engineering |
| concepts[17].id | https://openalex.org/C59822182 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[17].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/consistency |
| keywords[0].score | 0.7361176609992981 |
| keywords[0].display_name | Consistency (knowledge bases) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5815321207046509 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5537669062614441 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/identification |
| keywords[3].score | 0.5056402683258057 |
| keywords[3].display_name | Identification (biology) |
| keywords[4].id | https://openalex.org/keywords/sensitivity |
| keywords[4].score | 0.5052993893623352 |
| keywords[4].display_name | Sensitivity (control systems) |
| keywords[5].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[5].score | 0.45536157488822937 |
| keywords[5].display_name | Ensemble forecasting |
| keywords[6].id | https://openalex.org/keywords/internal-consistency |
| keywords[6].score | 0.42701470851898193 |
| keywords[6].display_name | Internal consistency |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3309594392776489 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.2338816225528717 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.21442556381225586 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.19415870308876038 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.1731889247894287 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.088908851146698 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.5194/gmd-2024-115 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/gmd-2024-115 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100041158 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Teo Price-Broncucia |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I188538660, https://openalex.org/I2802236040 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Colorado - Boulder |
| authorships[0].institutions[0].id | https://openalex.org/I188538660 |
| authorships[0].institutions[0].ror | https://ror.org/02ttsq026 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I188538660 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Colorado Boulder |
| authorships[0].institutions[1].id | https://openalex.org/I2802236040 |
| authorships[0].institutions[1].ror | https://ror.org/00jc20583 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I2802236040 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Colorado System |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Teo Price-Broncucia |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Colorado - Boulder |
| authorships[1].author.id | https://openalex.org/A5067337048 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2436-7838 |
| authorships[1].author.display_name | Allison H. Baker |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107766831 |
| authorships[1].affiliations[0].raw_affiliation_string | NSF National Center for Atmospheric Research |
| authorships[1].institutions[0].id | https://openalex.org/I107766831 |
| authorships[1].institutions[0].ror | https://ror.org/05cvfcr44 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I107766831, https://openalex.org/I1311060795, https://openalex.org/I2799356940, https://openalex.org/I4210141337, https://openalex.org/I4210150888 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | NSF National Center for Atmospheric Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Allison Baker |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | NSF National Center for Atmospheric Research |
| authorships[2].author.id | https://openalex.org/A5050498512 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3583-3611 |
| authorships[2].author.display_name | Dorit Hammerling |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I167576493 |
| authorships[2].affiliations[0].raw_affiliation_string | Colorado School of Mines |
| authorships[2].institutions[0].id | https://openalex.org/I167576493 |
| authorships[2].institutions[0].ror | https://ror.org/04raf6v53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I167576493 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Colorado School of Mines |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dorit Hammerling |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Colorado School of Mines |
| authorships[3].author.id | https://openalex.org/A5022404012 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4694-3165 |
| authorships[3].author.display_name | Michael Duda |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I107766831 |
| authorships[3].affiliations[0].raw_affiliation_string | NSF National Center for Atmospheric Research |
| authorships[3].institutions[0].id | https://openalex.org/I107766831 |
| authorships[3].institutions[0].ror | https://ror.org/05cvfcr44 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I107766831, https://openalex.org/I1311060795, https://openalex.org/I2799356940, https://openalex.org/I4210141337, https://openalex.org/I4210150888 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | NSF National Center for Atmospheric Research |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael Duda |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | NSF National Center for Atmospheric Research |
| authorships[4].author.id | https://openalex.org/A5059239130 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5180-7088 |
| authorships[4].author.display_name | Rebecca Morrison |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I188538660, https://openalex.org/I2802236040 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Colorado - Boulder |
| authorships[4].institutions[0].id | https://openalex.org/I188538660 |
| authorships[4].institutions[0].ror | https://ror.org/02ttsq026 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I188538660 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Colorado Boulder |
| authorships[4].institutions[1].id | https://openalex.org/I2802236040 |
| authorships[4].institutions[1].ror | https://ror.org/00jc20583 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I2802236040 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Colorado System |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rebecca Morrison |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | University of Colorado - Boulder |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/gmd-2024-115 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Ensemble Consistency Test: From CESM to MPAS and Beyond |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W1603736412, https://openalex.org/W2378757965, https://openalex.org/W4224903346, https://openalex.org/W1593262897, https://openalex.org/W2898732673, https://openalex.org/W2372869593, https://openalex.org/W4304185162, https://openalex.org/W2384194537, https://openalex.org/W2410053581, https://openalex.org/W2061118932 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/gmd-2024-115 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/gmd-2024-115 |
| primary_location.id | doi:10.5194/gmd-2024-115 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/gmd-2024-115 |
| publication_date | 2024-07-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2168745915, https://openalex.org/W2028463740, https://openalex.org/W3196934205, https://openalex.org/W2963238344, https://openalex.org/W4243998378, https://openalex.org/W2050732932, https://openalex.org/W2146901682, https://openalex.org/W2624630429, https://openalex.org/W2923771170, https://openalex.org/W2079139063, https://openalex.org/W2503235041, https://openalex.org/W2118711713, https://openalex.org/W2998885490, https://openalex.org/W4254332069, https://openalex.org/W2076690115, https://openalex.org/W4390306649, https://openalex.org/W3171210353, https://openalex.org/W3126210478 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 98 |
| abstract_inverted_index.By | 32 |
| abstract_inverted_index.In | 93 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 15, 25, 55, 77, 136 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 22, 36, 40, 82, 114, 142 |
| abstract_inverted_index.to | 49, 87, 106, 119 |
| abstract_inverted_index.up | 65 |
| abstract_inverted_index.us | 118 |
| abstract_inverted_index.we | 96, 130 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 6, 109, 126, 138, 164 |
| abstract_inverted_index.for | 19, 102, 150 |
| abstract_inverted_index.has | 70 |
| abstract_inverted_index.how | 111 |
| abstract_inverted_index.its | 7 |
| abstract_inverted_index.new | 147 |
| abstract_inverted_index.not | 71, 91 |
| abstract_inverted_index.now | 67 |
| abstract_inverted_index.our | 112, 146 |
| abstract_inverted_index.the | 16, 20, 26, 34, 45, 80, 84, 104, 133, 140, 143, 151, 158 |
| abstract_inverted_index.was | 90 |
| abstract_inverted_index.CESM | 161 |
| abstract_inverted_index.Test | 4 |
| abstract_inverted_index.able | 48 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.like | 123 |
| abstract_inverted_index.part | 78 |
| abstract_inverted_index.seen | 72 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.test | 124 |
| abstract_inverted_index.this | 68, 94 |
| abstract_inverted_index.walk | 131 |
| abstract_inverted_index.with | 60, 145 |
| abstract_inverted_index.work | 95 |
| abstract_inverted_index.(ECT) | 5 |
| abstract_inverted_index.Earth | 28 |
| abstract_inverted_index.Model | 30, 152 |
| abstract_inverted_index.allow | 117 |
| abstract_inverted_index.cost. | 128 |
| abstract_inverted_index.goals | 122 |
| abstract_inverted_index.model | 43 |
| abstract_inverted_index.other | 75, 88 |
| abstract_inverted_index.runs, | 44 |
| abstract_inverted_index.setup | 100, 134 |
| abstract_inverted_index.tools | 14 |
| abstract_inverted_index.until | 66 |
| abstract_inverted_index.Across | 153 |
| abstract_inverted_index.System | 29 |
| abstract_inverted_index.UF-ECT | 46, 85, 105, 115, 144 |
| abstract_inverted_index.become | 12 |
| abstract_inverted_index.clear. | 92 |
| abstract_inverted_index.costs. | 63 |
| abstract_inverted_index.detail | 137 |
| abstract_inverted_index.model, | 157, 163 |
| abstract_inverted_index.models | 59, 89, 108 |
| abstract_inverted_index.(CESM). | 31 |
| abstract_inverted_index.balance | 120 |
| abstract_inverted_index.because | 79 |
| abstract_inverted_index.changes | 24, 51 |
| abstract_inverted_index.chaotic | 57 |
| abstract_inverted_index.develop | 97 |
| abstract_inverted_index.process | 81 |
| abstract_inverted_index.through | 132 |
| abstract_inverted_index.updated | 160 |
| abstract_inverted_index.variant | 9 |
| abstract_inverted_index.(MPAS-A) | 156 |
| abstract_inverted_index.(UF-ECT) | 10 |
| abstract_inverted_index.Ensemble | 2 |
| abstract_inverted_index.Finally, | 129 |
| abstract_inverted_index.However, | 64 |
| abstract_inverted_index.accepted | 38 |
| abstract_inverted_index.adopting | 83 |
| abstract_inverted_index.adoption | 73 |
| abstract_inverted_index.applying | 103 |
| abstract_inverted_index.approach | 69 |
| abstract_inverted_index.ensemble | 39 |
| abstract_inverted_index.identify | 50 |
| abstract_inverted_index.internal | 53 |
| abstract_inverted_index.powerful | 13 |
| abstract_inverted_index.unwanted | 23 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Community | 27 |
| abstract_inverted_index.community | 18 |
| abstract_inverted_index.different | 107 |
| abstract_inverted_index.exceeding | 52 |
| abstract_inverted_index.expensive | 56 |
| abstract_inverted_index.framework | 101, 135 |
| abstract_inverted_index.important | 121 |
| abstract_inverted_index.numerical | 58 |
| abstract_inverted_index.perturbed | 41 |
| abstract_inverted_index.procedure | 86 |
| abstract_inverted_index.realistic | 165 |
| abstract_inverted_index.Prediction | 154 |
| abstract_inverted_index.Ultra-Fast | 8 |
| abstract_inverted_index.determined | 148 |
| abstract_inverted_index.parameters | 116, 149 |
| abstract_inverted_index.reasonable | 61 |
| abstract_inverted_index.scenarios. | 167 |
| abstract_inverted_index.ultra-fast | 42 |
| abstract_inverted_index.Consistency | 3 |
| abstract_inverted_index.atmospheric | 162 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.development | 17, 166 |
| abstract_inverted_index.generalized | 99 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.sensitivity | 125 |
| abstract_inverted_index.variability | 54 |
| abstract_inverted_index.communities, | 76 |
| abstract_inverted_index.distribution | 35 |
| abstract_inverted_index.computational | 62, 127 |
| abstract_inverted_index.specification | 113 |
| abstract_inverted_index.substantially | 159 |
| abstract_inverted_index.characterizing | 33 |
| abstract_inverted_index.identification | 21 |
| abstract_inverted_index.Scales-Atmosphere | 155 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5022404012, https://openalex.org/A5100041158, https://openalex.org/A5067337048, https://openalex.org/A5059239130, https://openalex.org/A5050498512 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I107766831, https://openalex.org/I167576493, https://openalex.org/I188538660, https://openalex.org/I2802236040 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.17369789 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |