The era qInternet +q taxi resources configuration research Based on the multiple regression model Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.2991/msmee-17.2017.52
As taxi software increasingly hot, more and more people use a taxi booking taxi software.Based on the mobile Internet software has formed certain taxi with taxi process, showed a lot of convenient advantage, a taxi passengers every time use software taxi booking, used software company will give the driver and passengers of the corresponding subsidy, and with the upgrade of competition, the magnitude of the subsidies larger and larger.However, problems such as resource allocation and subsidies a taxi gradually leads to the difficult situation, first to collect relevant data, mathematical model is established.For problem 1: taxi "match" the supply and demand of resources, We set up three indicators, Ownership mileage effectiveness, load factor, ten thousand people through the establishment of a comprehensive evaluation model, evaluation and found only the load factor are greatly influenced by time and space, so the load factor has carried on the detailed analysis, finally come to the conclusion.For question 2,how to make a taxi software can better promotion in the society, the need for a reasonable subsidy policy with taxi.According to different total subsidy and taxi population proportion, taxi ownership of data, we established the multivariate regression model, then using SPSS software for factor into the model of multiple regression equation is obtained, thus significance analysis, the equation to satisfy different results subsidence a taxi and total population, taxi, the relationship between the ownership and subsidy scheme is given, and the error of the equation of subsidy policy accordingly reasonable analysis and sensitivity analysis and verification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/msmee-17.2017.52
- https://download.atlantis-press.com/article/25877681.pdf
- OA Status
- gold
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2631531407
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2631531407Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/msmee-17.2017.52Digital Object Identifier
- Title
-
The era qInternet +q taxi resources configuration research Based on the multiple regression modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Xiaocheng Gao, Yingbing Fan, Guoxian Wang, Ye Wang, Xichun Jiang, Yannan MuList of authors in order
- Landing page
-
https://doi.org/10.2991/msmee-17.2017.52Publisher landing page
- PDF URL
-
https://download.atlantis-press.com/article/25877681.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://download.atlantis-press.com/article/25877681.pdfDirect OA link when available
- Concepts
-
Computer science, Regression analysis, Data modeling, Machine learning, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2631531407 |
|---|---|
| doi | https://doi.org/10.2991/msmee-17.2017.52 |
| ids.doi | https://doi.org/10.2991/msmee-17.2017.52 |
| ids.mag | 2631531407 |
| ids.openalex | https://openalex.org/W2631531407 |
| fwci | 0.0 |
| type | article |
| title | The era qInternet +q taxi resources configuration research Based on the multiple regression model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9606999754905701 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9358000159263611 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10698 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9351999759674072 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Transportation Planning and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5786374807357788 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C152877465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5695852041244507 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[1].display_name | Regression analysis |
| concepts[2].id | https://openalex.org/C67186912 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4400051236152649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[2].display_name | Data modeling |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.18052515387535095 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C77088390 |
| concepts[4].level | 1 |
| concepts[4].score | 0.12874993681907654 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[4].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5786374807357788 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/regression-analysis |
| keywords[1].score | 0.5695852041244507 |
| keywords[1].display_name | Regression analysis |
| keywords[2].id | https://openalex.org/keywords/data-modeling |
| keywords[2].score | 0.4400051236152649 |
| keywords[2].display_name | Data modeling |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.18052515387535095 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/database |
| keywords[4].score | 0.12874993681907654 |
| keywords[4].display_name | Database |
| language | en |
| locations[0].id | doi:10.2991/msmee-17.2017.52 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://download.atlantis-press.com/article/25877681.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) |
| locations[0].landing_page_url | https://doi.org/10.2991/msmee-17.2017.52 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088798967 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiaocheng Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[0].affiliations[0].raw_affiliation_string | Cpc committee office,Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[0].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Heihe University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaocheng Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cpc committee office,Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[1].author.id | https://openalex.org/A5089443356 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-0470-5686 |
| authorships[1].author.display_name | Yingbing Fan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[1].affiliations[0].raw_affiliation_string | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[1].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Heihe University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingbing Fan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[2].author.id | https://openalex.org/A5084838088 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-4915-1335 |
| authorships[2].author.display_name | Guoxian Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[2].affiliations[0].raw_affiliation_string | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[2].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Heihe University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guoxian Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[3].author.id | https://openalex.org/A5100423435 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0123-1260 |
| authorships[3].author.display_name | Ye Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[3].affiliations[0].raw_affiliation_string | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[3].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Heihe University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ye Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[4].author.id | https://openalex.org/A5042633707 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xichun Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[4].affiliations[0].raw_affiliation_string | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[4].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Heihe University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xichun Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[5].author.id | https://openalex.org/A5110500613 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yannan Mu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210114235 |
| authorships[5].affiliations[0].raw_affiliation_string | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210114235 |
| authorships[5].institutions[0].ror | https://ror.org/0221fhj86 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210114235 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Heihe University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yannan Mu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of science, Heihe University, 164300, Heihe City of Heilongjiang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://download.atlantis-press.com/article/25877681.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The era qInternet +q taxi resources configuration research Based on the multiple regression model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9606999754905701 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/msmee-17.2017.52 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://download.atlantis-press.com/article/25877681.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) |
| best_oa_location.landing_page_url | https://doi.org/10.2991/msmee-17.2017.52 |
| primary_location.id | doi:10.2991/msmee-17.2017.52 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://download.atlantis-press.com/article/25877681.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) |
| primary_location.landing_page_url | https://doi.org/10.2991/msmee-17.2017.52 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W6600005967 |
| referenced_works_count | 1 |
| abstract_inverted_index.a | 10, 28, 33, 76, 120, 157, 169, 218 |
| abstract_inverted_index.1: | 94 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.We | 103 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.by | 134 |
| abstract_inverted_index.in | 163 |
| abstract_inverted_index.is | 91, 206, 232 |
| abstract_inverted_index.of | 30, 51, 59, 63, 101, 119, 185, 202, 237, 240 |
| abstract_inverted_index.on | 15, 144 |
| abstract_inverted_index.so | 138 |
| abstract_inverted_index.to | 80, 85, 150, 155, 175, 213 |
| abstract_inverted_index.up | 105 |
| abstract_inverted_index.we | 187 |
| abstract_inverted_index.and | 6, 49, 55, 67, 74, 99, 125, 136, 179, 220, 229, 234, 246, 249 |
| abstract_inverted_index.are | 131 |
| abstract_inverted_index.can | 160 |
| abstract_inverted_index.for | 168, 197 |
| abstract_inverted_index.has | 20, 142 |
| abstract_inverted_index.lot | 29 |
| abstract_inverted_index.set | 104 |
| abstract_inverted_index.ten | 113 |
| abstract_inverted_index.the | 16, 47, 52, 57, 61, 64, 81, 97, 117, 128, 139, 145, 151, 164, 166, 189, 200, 211, 224, 227, 235, 238 |
| abstract_inverted_index.use | 9, 38 |
| abstract_inverted_index.SPSS | 195 |
| abstract_inverted_index.come | 149 |
| abstract_inverted_index.give | 46 |
| abstract_inverted_index.hot, | 4 |
| abstract_inverted_index.into | 199 |
| abstract_inverted_index.load | 111, 129, 140 |
| abstract_inverted_index.make | 156 |
| abstract_inverted_index.more | 5, 7 |
| abstract_inverted_index.need | 167 |
| abstract_inverted_index.only | 127 |
| abstract_inverted_index.such | 70 |
| abstract_inverted_index.taxi | 1, 11, 13, 23, 25, 34, 40, 77, 95, 158, 180, 183, 219 |
| abstract_inverted_index.then | 193 |
| abstract_inverted_index.thus | 208 |
| abstract_inverted_index.time | 37, 135 |
| abstract_inverted_index.used | 42 |
| abstract_inverted_index.will | 45 |
| abstract_inverted_index.with | 24, 56, 173 |
| abstract_inverted_index.2,how | 154 |
| abstract_inverted_index.data, | 88, 186 |
| abstract_inverted_index.error | 236 |
| abstract_inverted_index.every | 36 |
| abstract_inverted_index.first | 84 |
| abstract_inverted_index.found | 126 |
| abstract_inverted_index.leads | 79 |
| abstract_inverted_index.model | 90, 201 |
| abstract_inverted_index.taxi, | 223 |
| abstract_inverted_index.three | 106 |
| abstract_inverted_index.total | 177, 221 |
| abstract_inverted_index.using | 194 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.demand | 100 |
| abstract_inverted_index.driver | 48 |
| abstract_inverted_index.factor | 130, 141, 198 |
| abstract_inverted_index.formed | 21 |
| abstract_inverted_index.given, | 233 |
| abstract_inverted_index.larger | 66 |
| abstract_inverted_index.mobile | 17 |
| abstract_inverted_index.model, | 123, 192 |
| abstract_inverted_index.people | 8, 115 |
| abstract_inverted_index.policy | 172, 242 |
| abstract_inverted_index.scheme | 231 |
| abstract_inverted_index.showed | 27 |
| abstract_inverted_index.space, | 137 |
| abstract_inverted_index.supply | 98 |
| abstract_inverted_index."match" | 96 |
| abstract_inverted_index.between | 226 |
| abstract_inverted_index.booking | 12 |
| abstract_inverted_index.carried | 143 |
| abstract_inverted_index.certain | 22 |
| abstract_inverted_index.collect | 86 |
| abstract_inverted_index.company | 44 |
| abstract_inverted_index.factor, | 112 |
| abstract_inverted_index.finally | 148 |
| abstract_inverted_index.greatly | 132 |
| abstract_inverted_index.mileage | 109 |
| abstract_inverted_index.problem | 93 |
| abstract_inverted_index.results | 216 |
| abstract_inverted_index.satisfy | 214 |
| abstract_inverted_index.subsidy | 171, 178, 230, 241 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.upgrade | 58 |
| abstract_inverted_index.Internet | 18 |
| abstract_inverted_index.analysis | 245, 248 |
| abstract_inverted_index.booking, | 41 |
| abstract_inverted_index.detailed | 146 |
| abstract_inverted_index.equation | 205, 212, 239 |
| abstract_inverted_index.multiple | 203 |
| abstract_inverted_index.problems | 69 |
| abstract_inverted_index.process, | 26 |
| abstract_inverted_index.question | 153 |
| abstract_inverted_index.relevant | 87 |
| abstract_inverted_index.resource | 72 |
| abstract_inverted_index.society, | 165 |
| abstract_inverted_index.software | 2, 19, 39, 43, 159, 196 |
| abstract_inverted_index.subsidy, | 54 |
| abstract_inverted_index.thousand | 114 |
| abstract_inverted_index.Ownership | 108 |
| abstract_inverted_index.analysis, | 147, 210 |
| abstract_inverted_index.different | 176, 215 |
| abstract_inverted_index.difficult | 82 |
| abstract_inverted_index.gradually | 78 |
| abstract_inverted_index.magnitude | 62 |
| abstract_inverted_index.obtained, | 207 |
| abstract_inverted_index.ownership | 184, 228 |
| abstract_inverted_index.promotion | 162 |
| abstract_inverted_index.subsidies | 65, 75 |
| abstract_inverted_index.advantage, | 32 |
| abstract_inverted_index.allocation | 73 |
| abstract_inverted_index.convenient | 31 |
| abstract_inverted_index.evaluation | 122, 124 |
| abstract_inverted_index.influenced | 133 |
| abstract_inverted_index.passengers | 35, 50 |
| abstract_inverted_index.population | 181 |
| abstract_inverted_index.reasonable | 170, 244 |
| abstract_inverted_index.regression | 191, 204 |
| abstract_inverted_index.resources, | 102 |
| abstract_inverted_index.situation, | 83 |
| abstract_inverted_index.subsidence | 217 |
| abstract_inverted_index.accordingly | 243 |
| abstract_inverted_index.established | 188 |
| abstract_inverted_index.indicators, | 107 |
| abstract_inverted_index.population, | 222 |
| abstract_inverted_index.proportion, | 182 |
| abstract_inverted_index.sensitivity | 247 |
| abstract_inverted_index.competition, | 60 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.mathematical | 89 |
| abstract_inverted_index.multivariate | 190 |
| abstract_inverted_index.relationship | 225 |
| abstract_inverted_index.significance | 209 |
| abstract_inverted_index.comprehensive | 121 |
| abstract_inverted_index.corresponding | 53 |
| abstract_inverted_index.establishment | 118 |
| abstract_inverted_index.verification. | 250 |
| abstract_inverted_index.conclusion.For | 152 |
| abstract_inverted_index.effectiveness, | 110 |
| abstract_inverted_index.software.Based | 14 |
| abstract_inverted_index.taxi.According | 174 |
| abstract_inverted_index.established.For | 92 |
| abstract_inverted_index.larger.However, | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.08197647 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |